A. 面板数据 时间序列最短几年
你是问液晶显示器屏的面板吗?如果是,那就看厂家质保年限了.只要正常使用面板自身原因损坏,就可以免费质保。一般情况下面板只要不坏就没有时间限制。就是时间长了,如LCD屏就可能出现灯管正常老化等现象!希望能帮到你!
B. 什么叫面板数据分析
面板数据,即Panel Data,也叫“平行数据”,是指在时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样本数据。或者说他是一个m*n的数据矩阵,记载的是n个时间节点上,m个对象的某一数据指标。
其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。但是,如果从其内在含义上讲,把panel data译为“时间序列—截面数据” 更能揭示这类数据的本质上的特点。也有译作“平行数据”或“TS-CS数据(Time Series - Cross Section)”。
1如
城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。
如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点的不同就是时间序列。
2如
2000、2001、2002、2003、2004各年中国所有直辖市的GDP分别为:
北京市分别为8、9、10、11、12;
上海市分别为9、10、11、12、13;
天津市分别为5、6、7、8、9;
重庆市分别为7、8、9、10、11(单位亿元)。
这就是面板数据。
面板数据是按照英文的直译,也有人将Panel data翻译成综列数据、平行数据等。由于国内没有统一的说法,因此直接使用Panel data这种英文说法应该更准确一些。说面板数据也是比较通用的,但是面板数据并不能从名称上反映出该种数据的实际意义,故很多研究者不愿使用。
面板数据分析方法是最近几十年来发展起来的新的统计方法,面板数据可以克服时间序列分析受多重共线性的困扰,能够提供更多的信息、更多的变化、更少共线性、更多的自由度和更高的估计效率,而面板数据的单位根检验和协整分析是当前最前沿的领域之一。
面板数据的单位根检验的方法主要有 Levin,Lin and CHU(2002)提出的LLC检验方法[5]。Im,Pesearn,Shin(2003)提出的IPS检验[6] , Maddala和Wu(1999),Choi(2001)提出的ADF和PP检验[7]等。面板数据的协整检验的方法主要有Pedroni[8] (1999,2004)和Kao[9](1999)提出的检验方法,这两种检验方法的原假设均为不存在协整关系,从面板数据中得到残差统计量进行检验。Luciano(2003)中运用Monte Carlo模拟[10]对协整检验的几种方法进行比较,说明在T较小(大)时,Kao检验比Pedroni检验更高(低)的功效。
1.指标选取和数据来源
经济增长:本文使用地区生产总值 ,以1999年为基期,根据各地区生产总值指数折算成实际 ,单位:亿元。
能源消费:考虑到近年来我国能源消费总量中,煤炭和石油供需存在着明显低估,而电力消费数据相当准确。因此使用电力消费更能准确反映能源消费与经济增长之间的内在联系(林伯强,2003)。所以本文使用各地区电力消费量 作为能源消费量,单位:亿千瓦小时。
环境污染:污染物以气休、液体、固体形态存在,本文选取工业废水排放量作为环境污染的量化指标,单位:万吨。
本文采用1999-2006年全国30个省(直辖市,自治区)的地区生产总值 、电力消费量 和工业废水排放量 的数据构建面板数据集。30个省(直辖市,自治区)包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、山西、内蒙古、吉林、黑龙江、安徽、江西、河南、湖北、湖南、海南、广西、重庆、四川、贵州、云南、陕西、西藏、甘肃、青海、宁夏、新疆,由于西藏数据不全故不包括在内。数据来源于《中国统计年鉴2000-2007》。为了消除变量间可能存在的异方差,本文先对地区生产总值 、地区电力消费量和工业废水排放量进行自然对数变换。
C. 如何在stata里把几年的横截面数据合并成面板数据
help reshape
没有遇到过这种问题,但是我觉得你可以保存成两份数据,然后放在同一个文件夹,用cd调用就可以用这两份数据了
D. 面板数据进行min-max标准化是一年一年吗
是的,就是针对每个年度的截面数据来计算的,否则个体年度内标准化没有意义,无法横向比较,纵向年度比较可以控制年度差异。
E. 什么是面板数据
面板数据,即Panel Data,也叫“平行数据”,是指在时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样本数据。或者说他是一个m*n的数据矩阵,记载的是n个时间节点上,m个对象的某一数据指标。
概念
其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。但是,如果从其内在含义上讲,把panel data译为“时间序列—截面数据” 更能揭示这类数据的本质上的特点。也有译作“平行数据”或“TS-CS数据(Time Series - Cross Section)”。
实证分析
1.指标选取和数据来源
经济增长:本文使用地区生产总值,以1999年为基期,根据各地区生产总值指数折算成实际 ,单位:亿元。
能源消费:考虑到近年来我国能源消费总量中,煤炭和石油供需存在着明显低估,而电力消费数据相当准确。因此使用电力消费更能准确反映能源消费与经济增长之间的内在联系(林伯强,2003)。所以本文使用各地区电力消费量 作为能源消费量,单位:亿千瓦小时。
环境污染:污染物以气休、液体、固体形态存在,本文选取工业废水排放量作为环境污染的量化指标,单位:万吨。
本文采用1999-2006年全国30个省(直辖市,自治区)的地区生产总值 、电力消费量 和工业废水排放量 的数据构建面板数据集。30个省(直辖市,自治区)包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、山西、内蒙古、吉林、黑龙江、安徽、江西、河南、湖北、湖南、海南、广西、重庆、四川、贵州、云南、陕西、西藏、甘肃、青海、宁夏、新疆,由于西藏数据不全故不包括在内。数据来源于《中国统计年鉴2000-2007》。为了消除变量间可能存在的异方差,本文先对地区生产总值 、地区电力消费量和工业废水排放量进行自然对数变换。
F. stata中大部分样本对应有3年数据,但是有点只有一年或两年,可以视为面板数据吗
可以视为面板数据。但是因为年份不多,所以处理数据时意不是太大,不过还是有一定意义。
G. 只有2个样本10年的数据可做面板数据分析吗
10年是每年一个数据吗,这样就不能用了,至少要30个样本才能用
H. 我的面板数据就是好几年的能不能做因子分析能的话数据怎么选取
输入的话按列输入即可 看到你的数据才知道是不是能做因子分析 你的很多描述都不清楚,没法判断 我替别人做这类的数据分析蛮多的
I. 用面板数据做分析需要多少年的数据才行啊
这个看模型需要估计的参数,一般来讲,较多的数据会有更好的自由度,结果就更精确。不过前提是数据质量没问题。
J. 只有两年的数据算面板数据吗还是分开做两年的横截面
没有遇到过这种问题,但是我觉得你可以保存成两份数据,然后放在同一个文件夹,用cd调用就可以用这两份数据了