1. 大数据具体是什么
二、什么是大数据(大数据是什么?)
大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
三、发展历程(大数据发展是否成熟?)
目前,我国大数据产业正处于高速发展期,多种商业模式得到市场印证,新产品和服务不断推出,细分市场走向差异化竞争。
四、和传统数据的区别(跟传统数据有什么区别?)
1、传统数据信息化:
传统数据信息化大多是存贮在本地,非全部公开数据资源,例如市场调研数据、企业数据、生产数据、制造数据、消费数据、医疗数据、金融数据等数据资源;把握数据资源的企业或行业也必然成为大数据的直接受益者。
2、大数据之移动互联网:
移动互联网的快速发展,搜索引擎及智能手机等移动设备成为重要的数据入口。社交网络、电子商务以及各类应用APP等将分散的"小数据"变成"大数据"。
3、大数据之物联网:
物联网的发展能够实现"万物互联",所有事物产生的信息都是数据,所有事物之间都具有"数据化"的联系。
五、应用领域(大数据用在哪些地方?)
2. 大数据是什么
大数据本身是一个抽象的概念。从一般意义上讲,大数据是指无法在有限时间内用常规软件工具对其进行获取、存储、管理和处理的数据集合。
目前,业界对大数据还没有一个统一的定义,但是大家普遍认为,大数据具备 Volume、Velocity、Variety 和 Value 四个特征,简称“4V”,即数据体量巨大、数据速度快、数据类型繁多和数据价值密度低,如下图 所示。
3. 大数据是什么的数据
大数据并不只是数据量大而已,它是数据存储+分布式调度+数据分析的结合
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产,简单来说大数据就是海量的数据,就是数据量大、来源广、种类繁多(日志、视频、音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据。
大数据的7大特征:海量性,多样性,高速性,可变性,真实性,复杂性,价值性
随着大数据产业的发展,它逐渐从一个高端的、理论性的概念演变为具体的、实用的理念。
很多情况下大数据来源于生活。
比如你点外卖,准备什么时候买,你的位置在哪,商家位置在哪,想吃什么……这都是数据,人一多各种各样的信息就越多,还不断增长,把这些信息集中,就是大数据。
大数据的价值并不是在这些数据上,而是在于隐藏在数据背后的——用户的喜好、习惯还有信息。
4. 大数据是什么意思,大数据概念怎么理解
大数据(bigdata,megadata),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Bigdata)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。《着云台》的分析师团队认为,大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据应用的弊端
虽然大数据的拥护者看到了使用大数据的巨大潜力,但也有隐私倡导者担心,因为越来越多的人开始收集相关数据,无论是他们是否会故意透露这些数据或通过社交媒体张贴,甚至他们在不知不觉中通过分享自己的生活而公布了一些具体的数字细节。
分析这些巨大的数据集会使我们的预测能力产生虚假的信息,将导致作出许多重大和有害的错误决定。此外,数据被强大的人或机构滥用,自私的操纵议程达到他们想要的结果。
5. 请问大数据是什么
思迈特软件Smartbi的功能非常完善,报表、填报、BI 一应俱全,可以说是国内相关软件产品的佼佼者。接下来我们就具体来看看Smartbi的优秀之处吧!
1、简单易用上手快
国产BI思迈特Smartbi融合Excel界面进行自助取数完成分析,有Excel基础即可上手,自然语言分析实现“所见即所得”。
2、亿万数据秒级响应
国产BI思迈特Smartbi支持滚动加载,这样的操作使报表的加载速度得到了极大的提升,负载均衡让内置查询引擎实现线性扩充,MPP高速缓存库抽取数据,亿万数据也能达成秒级响应。
3、强大的计算能力
国产BISmartbi提供分布式计算,支持表计算、跨库计算、OLAP多维计算、时间智能计算、SQL扩展、Python扩展,所有的表现层使用统一的数据模型,具备非常强大的计算能力!
4、系统稳定性有保障
国产BI思迈特Smartbi支持分布式session共享、扩展包热加载,持续扩展产品补丁包更新机制,还能可视化地进行系统检查和监控,安全有效地保障系统的稳定性。
5、便捷的分享协同
国产BI思迈特Smartbi提供应用商店、消息中心、数据导航、数据答疑、互助共享等功能,通过分享和协作解决企业无沉淀、无共享、无文化的问题,帮助企业构建完善的数据化运营的生态系统。
6. 大数据的名词解释是什么
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,数据的来源,直接导致分析结果的准确性和真实性。若数据来源是完整的并且真实,最终的分析结果以及决定将更加准确。第四,处理速度快,1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”
从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。
7. 大数据是指什么如何解释
关于大数据,给出的定义是:
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
简单理解为:
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
大数据的核心作用是数据价值化,简单说就是大数据让数据产生各种“价值”,这个数据价值化的过程就是大数据要做的主要事情。
8. 大数据是什么
大数据的概念可能不同的人会有不同的理解,我自己从08年开始从事大数据相关的工作,那个时候我们是觉得自己搞的是云计算和数据仓库,而到了2011、2012年的时候,国内大数据的概念才兴起来,之后就是炒了三年的概念。
因为从事这一方向,这几年不断会有人问我什么是大数据?我一直都回答不好。在最近的几个月,我对这一概念思考的更多一些,结合看过的一些资料(如《大数据时代》、《数学之美》第二版、《硅谷之谜》、吴军的演讲材料等)和实际的经历,算是有了一些认识。与其说认识,还不如说是总结,换个角度看待这个问题,分为大数据概念和大数据思维。
我把大数据的概念总结为四个字:大、全、细、时。
大数据之大
我们先来看一组数据:
网络每天采集的用户行为数据有1.5PB以上
全国各地级市今天的苹果价格数据有2MB
1998年Google抓取的互联网页面共有47GB(压缩后)
一台风力发电机每天产生的振动数据有50GB
网络每天的行为数据1.5个PB够大吧?我们毫无怀疑这是大数据。但全国各个地级市今天的苹果价格只有2MB大小,是典型的小数据吧?但如果我们基于这个数据,做一个苹果分销的智能调度系统,这就是个牛逼的大数据应用了。Google在刚成立的时候,佩奇和布林下载了整个互联网的页面,在压缩后也就47GB大小,现在一个U盘都能装的下,但Google搜索显然是个大数据的应用。如果再来看一台风机每天的振动数据可能都有50GB,但这个数据只是针对这一台风机的,并不能从覆盖面上,起到多大的作用,这我认为不能叫大数据。
这里就是在强调大,是Big不是Large,我们强调的是抽象意义的大。