Ⅰ “大数据”时代下如何处理数据
大数据被越来越多的人提起,其价值也逐渐深入人心。但,大数据是如何处理的,很多人并不知道。其实,通常大数据处理方式包括两种,一种是实时处理,另一种则为离线处理。
商业中比较常见的,就是使用HDFS技术对数据进行储存,然后使用MapRece对数据进行批量化理,然后将处理好的数据进行存储或者展示。其中,HDFS是一种分布式文件系统,而MapRece则是一种分布式批量计算框架。
Ⅱ 计算机是怎样处理数据的
计算机处理数据的流程为:
1、提取阶段:由输入设备把原始数据或信息输入给计算机存储器存起来。
2、解码阶段:根据CPU的指令集架构(ISA)定义将数值解译为指令
3、执行阶段:再由控制器把需要处理或计算的数据调入运算器。
4、最终阶段:由输出设备把最后运算结果输出。
Ⅲ 如何处理记录的数据
XX老师:您好!处理记录的信息一般要经历三个步骤:统计/整理、归类、解释。观察者先要对根据观察量表所记录的信息进行统计或整理。在进行统计记录的数据时,对于一些简单的、目的单一的观察量表所收集的数据,如学生的应答方式,可以从记录中推算出一些能说明问题的百分比、频数或排序,呈现在相应的观察量表上;对于那些较为复杂的数据,如师生语言互动分析,可以通过频率和百分比的计算,绘制出可以说明问题的图表,也可以通过电脑,利用Excel等电子制表软件来开发数据表,利用电脑进行数据分析,然后再根据需要由电脑绘制出不同的图表。对记录的文字材料要进行整理,按观察量表的设计意图逐条核对文字,或补充、划删减、或合并,转换成简洁、明了的语言表达,真实地复原当时的课堂情境。如果是多人合作观察同一个内容,统计或整理所记录的信息应在交流、讨论的基础上对各自的信息进行必要的合并。在此基础上,寻找、发现可以陈述的问题或观点,建构分析框架,对统计或整理的结果按不同的问题进行归类,把具体的事实与数字集合到相应的问题或观点中去,为下一步的解释作好准备。解释的任务在于对发现的问题或被观察者的教学特色进行剖析与反思,对数字的具体含义与现象背后的原因及意义作出解释,并提供相应的教学建议。但必须要依据课堂实录,必须要针对此人此事此境此课,不要进行过多的经验类推或假设。
Ⅳ 怎么进行数据基本处理
首先数据量很小的称不上数据的分析,智能算是统计整理,真正的数据处理和分析工作肯定是对数量大的而言的,这一般借助相关的工具,
比如企业在数据处理和分析上的需求就比较多,他们会一般应用一些业务系统,但现在一般部署FineBI之类的商业智能来深度处理啦,数据的处理方面肯定依靠软件,分析工作一部分靠工具,一部分靠人员的经验和专业素养。
Ⅳ 如何处理数据问题是关键
关键技术可能不是某一方面的,要从多方面来解决,并行计算,内存计算,高性能IO等等。譬如国内永洪科技的实时大数据BI。从具体底层技术来说。
有四方面,也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:
跨粒度计算(In-DatabaseComputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP Computing)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
Ⅵ 如何处理海量数据
在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:
一、数据量过大,数据中什么情况都可能存在。
如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至 过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时, 前面还能正常处理,突然到了某个地方问题出现了,程序终止了。
二、软硬件要求高,系统资源占用率高。
对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
三、要求很高的处理方法和技巧。
这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经验的积累,也是个人的经验的总结。没有通用的处理方法,但有通用的原理和规则。
下面我们来详细介绍一下处理海量数据的经验和技巧:
一、选用优秀的数据库工具
现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软 公司最近发布的SQL Server 2005性能也不错。另外在BI领域:数据库,数据仓库,多维数据库,数据挖掘等相关工具也要进行选择,象好的ETL工具和好的OLAP工具都十分必要, 例如Informatic,Eassbase等。笔者在实际数据分析项目中,对每天6000万条的日志数据进行处理,使用SQL Server 2000需要花费6小时,而使用SQL Server 2005则只需要花费3小时。
二、编写优良的程序代码
处理数据离不开优秀的程序代码,尤其在进行复杂数据处理时,必须使用程序。好的程序代码对数据的处理至关重要,这不仅仅是数据处理准确度的问题,更是数据处理效率的问题。良好的程序代码应该包含好的算法,包含好的处理流程,包含好的效率,包含好的异常处理机制等。
三、对海量数据进行分区操作
对海量数据进行分区操作十分必要,例如针对按年份存取的数据,我们可以按年进行分区,不同的数据库有不同的分区方式,不 过处理机制大体相同。例如SQL Server的数据库分区是将不同的数据存于不同的文件组下,而不同的文件组存于不同的磁盘分区下,这样将数据分散开,减小磁盘I/O,减小了系统负荷, 而且还可以将日志,索引等放于不同的分区下。
四、建立广泛的索引
对海量的数据处理,对大表建立索引是必行的,建立索引要考虑到具体情况,例如针对大表的分组、排序等字段,都要建立相应 索引,一般还可以建立复合索引,对经常插入的表则建立索引时要小心,笔者在处理数据时,曾经在一个ETL流程中,当插入表时,首先删除索引,然后插入完 毕,建立索引,并实施聚合操作,聚合完成后,再次插入前还是删除索引,所以索引要用到好的时机,索引的填充因子和聚集、非聚集索引都要考虑。
五、建立缓存机制
当数据量增加时,一般的处理工具都要考虑到缓存问题。缓存大小设置的好差也关系到数据处理的成败,例如,笔者在处理2亿条数据聚合操作时,缓存设置为100000条/Buffer,这对于这个级别的数据量是可行的。
六、加大虚拟内存
如果系统资源有限,内存提示不足,则可以靠增加虚拟内存来解决。笔者在实际项目中曾经遇到针对18亿条的数据进行处理, 内存为1GB,1个P42.4G的CPU,对这么大的数据量进行聚合操作是有问题的,提示内存不足,那么采用了加大虚拟内存的方法来解决,在6块磁盘分区 上分别建立了6个4096M的磁盘分区,用于虚拟内存,这样虚拟的内存则增加为 4096*6 + 1024 =25600 M,解决了数据处理中的内存不足问题。
七、分批处理
海量数据处理难因为数据量大,那么解决海量数据处理难的问题其中一个技巧是减少数据量。可以对海量数据分批处理,然后处 理后的数据再进行合并操作,这样逐个击破,有利于小数据量的处理,不至于面对大数据量带来的问题,不过这种方法也要因时因势进行,如果不允许拆分数据,还 需要另想办法。不过一般的数据按天、按月、按年等存储的,都可以采用先分后合的方法,对数据进行分开处理。
八、使用临时表和中间表
数据量增加时,处理中要考虑提前汇总。这样做的目的是化整为零,大表变小表,分块处理完成后,再利用一定的规则进行合 并,处理过程中的临时表的使用和中间结果的保存都非常重要,如果对于超海量的数据,大表处理不了,只能拆分为多个小表。如果处理过程中需要多步汇总操作, 可按汇总步骤一步步来,不要一条语句完成,一口气吃掉一个胖子。
九、优化查询SQL语句
在对海量数据进行查询处理过程中,查询的SQL语句的性能对查询效率的影响是非常大的,编写高效优良的SQL脚本和存储 过程是数据库工作人员的职责,也是检验数据库工作人员水平的一个标准,在对SQL语句的编写过程中,例如减少关联,少用或不用游标,设计好高效的数据库表 结构等都十分必要。笔者在工作中试着对1亿行的数据使用游标,运行3个小时没有出结果,这是一定要改用程序处理了。
十、使用文本格式进行处理
对一般的数据处理可以使用数据库,如果对复杂的数据处理,必须借助程序,那么在程序操作数据库和程序操作文本之间选择, 是一定要选择程序操作文本的,原因为:程序操作文本速度快;对文本进行处理不容易出错;文本的存储不受限制等。例如一般的海量的网络日志都是文本格式或者 csv格式(文本格式),对它进行处理牵扯到数据清洗,是要利用程序进行处理的,而不建议导入数据库再做清洗。
十一、定制强大的清洗规则和出错处理机制
海量数据中存在着不一致性,极有可能出现某处的瑕疵。例如,同样的数据中的时间字段,有的可能为非标准的时间,出现的原因可能为应用程序的错误,系统的错误等,这是在进行数据处理时,必须制定强大的数据清洗规则和出错处理机制。
十二、建立视图或者物化视图
视图中的数据来源于基表,对海量数据的处理,可以将数据按一定的规则分散到各个基表中,查询或处理过程中可以基于视图进行,这样分散了磁盘I/O,正如10根绳子吊着一根柱子和一根吊着一根柱子的区别。
十三、避免使用32位机子(极端情况)
目前的计算机很多都是32位的,那么编写的程序对内存的需要便受限制,而很多的海量数据处理是必须大量消耗内存的,这便要求更好性能的机子,其中对位数的限制也十分重要。
十四、考虑操作系统问题
海量数据处理过程中,除了对数据库,处理程序等要求比较高以外,对操作系统的要求也放到了重要的位置,一般是必须使用服务器的,而且对系统的安全性和稳定性等要求也比较高。尤其对操作系统自身的缓存机制,临时空间的处理等问题都需要综合考虑。
十五、使用数据仓库和多维数据库存储
数据量加大是一定要考虑OLAP的,传统的报表可能5、6个小时出来结果,而基于Cube的查询可能只需要几分钟,因此处理海量数据的利器是OLAP多维分析,即建立数据仓库,建立多维数据集,基于多维数据集进行报表展现和数据挖掘等。
十六、使用采样数据,进行数据挖掘
基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样 的误差不会很高,大大提高了处理效率和处理的成功率。一般采样时要注意数据的完整性和,防止过大的偏差。笔者曾经对1亿2千万行的表数据进行采样,抽取出 400万行,经测试软件测试处理的误差为千分之五,客户可以接受。
还有一些方法,需要在不同的情况和场合下运用,例如使用代理键等操作,这样的好处是加快了聚合时间,因为对数值型的聚合比对字符型的聚合快得多。类似的情况需要针对不同的需求进行处理。
海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。
Ⅶ 请教cpu如何处理数据
32位CPU, 一次读取32位.
然后进行分析, 假设最高4位为这个指令的类型(比如指令长度)
剩下的14位为指令代码, 24位为要处理的数据.
也可能 剩下的28位都是指令, 要处理的数据在下次读取的32位中..
CPU是这样的判断方法,
不好意思, 表达能力实在有限, 有空去看下计算机原理, CPU那部分
Ⅷ 用excel怎么进行数据的处理
链接:http://pan..com/s/16kh7EBAfTH8KLlp0hUVM7A
秋叶Excel数据处理学习班网盘资料。不熬夜不加班的Excel数据管理术,在想要提升处理数据表格能力的学习期80%的人都会被以下问题困扰,很多效果明明就能用软件功能快速实现,比如一键求和、数据分列合并,但是因为不知道,总觉得很困难?本套课程可以帮助你深入了解Excel数据处理方法&更全面系统理解快速解决思路。通过学习本套课程让你告别Excel小白,秒变Excel数据分析大牛。
课程目录:
SUM函数基本用法
COUNTIF函数
Match函数的基本用法
INDEX函数的基本用法
VLOOKUP函数的基本用法
用图标集表示数据升降
.....
Ⅸ 怎么快速处理大量数据
假定原数据在SHEET1工作表的ABC列,前两行为表头,数据从第3行开始。
转换结果放在SHEET2工作表中。在SHEET2表A1输入公式:
=INDEX(SHEET1!B:B,ROW()*5+1)
将公式向下复制。
在SHEET2表B1输入公式:
=INDEX(SHEET1!$C:$C,ROW()*5-4+COLUMN())
将公式向右复制到F1,再将B至F列公式向下复制。