Ⅰ 企业如何应用大数据分析
企业应用大数据分析就要借助一些数据分析工具,比如商业智能软件FineBI,有了工具就等于完成了一半。一般数据分析工作可分为以下三个步骤:
1、明确业务需求
按业务驱动的角度,了解业务部门需要解决什么样的问题,业务范围是什么,所要达成的效果又是怎样,依据这些需求来实施部署商业智能工具。
2、数据结合与关联
由于企业数据海量的特点和多元化的结构形式,需要商业分析工具具有海量的数据探索和分析能力,能够实时有效的与已有数据结合,产生精确的行动方向。
此外,企业数据的价值最终体现在客户的消费上,因此,对于能直接产生价值的数据要和客户关系和交易数据进行结合和关联,从而做出直接导向效益的决策。
3、培养数据分析人才
企业的数据分析,商业智能系统的部署是关键,但业务人员数据分析水平也同样重要。这就要求人员在信息过程管理当中要逐渐培养科学化管理数据的意识,企业上下也要统一共识,从而形成对企业数据的综合管理。
Ⅱ 该如何用好大数据
该如何用好大数据
近一两年来,大数据是一个被频繁提及的词汇。不管是近几天麻涌举行的五矿物流麻涌基地发布会上,还是在智博会配套活动中国(东莞)云计算高峰论坛上,越来越多的企业和研究者对大数据产生了非常浓厚的兴趣。越来越多的东莞企业表示想要做好大数据运营,但是,大数据要用好并不容易。
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。
大数据听起来似乎很高深,但其实已经渗透到人们生活的方方面面。例如一个消费者在淘宝上搜索了泳镜,接下来他在打开许多网站时都会看到游泳衣、游泳圈等相关产品的广告。这,就是当前大数据营销的一个典型应用场景。
前不久,陈国良和石钟慈两名专门研究云计算和大数据的工程院院士在东莞进行了一次大数据的知识普及讲座。
据陈国良院士介绍,2012年3月,美国总统奥巴马在一次研究计划上提出了大数据概念。“大数据”的说法由此被全球范围采用,而在此前,国内的研究者一般称其为天文数据、海量数据或者巨量数据。不管是物联网设备的传感器、科学研究还是人们的日常生活,都会产生大量的数据。而善于用好大数据技术,则可以从这些数据中挖到“黄金”。
不过,陈国良也表示,大数据的结果很有价值,但千万不能陷入大数据独裁主义,人,才是大数据的第一要素。当然,要求所有企业都具有大数据分析能力。
陈国良所说的大数据分析能力,便是大数据的组成部分。随着大数据的应用日渐广泛,影响日渐深远,大数据思维的重要性也日渐显着。
大数据思维,就是能够正确利用好大数据的思维方式。大数据并不是指任何决策都参考数据,也不是要求所有问题都足够精准,更不是花巨资打造大数据系统或平台,而是在应该让大数据出场的地方把大数据用好。
要用好大数据,首先应该采集大数据。与传统的调查问卷等搜集信息数据的方式不同,互联网时代的大数据采集是“无限的、无意识的、非结构化的”数据采集。各种纷繁复杂的行为数据以行为日志的形式上传到服务器中,随用随取。此外,分析数据使用了专门的数据模型。最值得一提的是,大数据可以根据营销、决策等特定问题,从数据库中调取海量数据进行挖掘以完成数据验证,甚至可以得出与常识或经验判断完全相异的结论出来。
不少业内人士表示,很多时候,大数据的价值正是体现在这样与直观判断大相径庭的地方。对此,陈国良也表示,“大数据分析结果有时候没有理论支撑甚至无法证明,不过分析仍然有效,技术仍然在发展!”陈国良还为东莞有意进行大数据挖掘的企业支招说,大数据的获取,不能依靠随机采样,也不能强求精确性,甚至分析结果也难以解释其所以然,不过能用就好,以后可以慢慢再弄清其中的科学原因。
业内人士分析说,大数据的应用领域正在逐步增加。一方面,东莞企业可以通过大数据对用户行为与特征作出分析。通过大量数据可以分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。此外,通过大数据可以支撑精准营销信息推送。让最精确的信息传递到正好匹配的客户手中。
另外,通过大数据可以让营销活动能够与用户能够产生“会心一击”的效果,这种基于海量数据的挖掘和匹配实现的精准信息,能够让企业有效地取得客户的欢心。
在陈国良眼中,云计算、物联网以及大数据是三位一体的,伴随着万物互联的趋势以及云计算逐步变得更加方便易得,价格低廉,大数据的应用场景以及应用的经济类型也都将得到进一步的加强。
Ⅲ 如何使用大数据技术为企业创造更大的价值
大家好,我是Lake,专注大数据技术、互联网科技见解、程序员经验分享
作为一名大数据工程师,我来说下我的想法。如何使用大数据技术为企业创造更大的价值?这里有两个注重点,一个是大数据技术,一个是为企业创造价值。目前大数据在不同的应用场景,可以分为很多不同种类的技术,比如数据的离线计算有 Hadoop、Spark,存储方面有HBASE、HDFS、MongoDB、JanusGraph,消息中间件有 Kafka、MetaQ,实时计算有Storm、Flink、Spark Streaming等等。这么多大数据技术,怎么样为企业创造出更大的价值呢,我认为有一下几点:
保证线上业务稳定性
目前很多企业最底层都用到大数据相关技术,如何保证线上业务稳定成为大数据技术最重要的一件事情。线上业务不稳定会直接影响到消费者的使用,尤其是涉及到交易相关的业务更是重中之重。线上业务的稳定性不能受到大数据集群抖动而产生影响,打个比方,线上订单交易链路在最底层使用到了HBase 数据库,但HBase集群突然 Down掉之后,那么线上用户突然不能够进行下单和支付了,这对于公司来说,直接就影响到公司的交易额和利润,这种情况是公司绝对无法容忍的。
所以你能够保证公司所使用大数据技术集群资源越稳定,那么对于线上业务的稳定运行就越有保证,通过对大数据集群稳定性进行保障,进一步提升消费者的使用体感,这就是你的价值。
更好的降低大数据集群机器资源消耗
更好的降低公司大数据集群机器的资源消耗,提升公司集群资源的使用率,进一步压榨机器的性能也为公司带来了价值。公司每台机器,说实话,都需要从外进行采购,这消耗的就是公司的资金。如果你能在现有的机器上,满足更多的业务,而不只是单纯的购买机器水平扩展来满足业务,这样会进一步帮助公司节约资金。公司的最终目的也是为了盈利,你帮公司降低了机器的购买,这也是为公司节约了一笔很大的成本。
大数据技术创新
大数据技术发展到了一定程度,就需要自己通过技术创新,来满足公司一些更为复杂的业务场景。通过技术创新,带动业务发展。比如图数据库的出现,使得公司能够使用图数据库来构建用户的社交网络图,通过构建的社交网络图可以快速了解到用户的关注、用户的粉丝、和用户兴趣相同的用户有哪些。哪些用户是信息传播关键点等等,通过大数据技术的创新,知道更多潜藏在大数据底层的商业信息价值,从而帮助公司上层更好的做战略规划。同时,也可以通过技术创新,变革整个公司的技术架构,使用新的技术来满足未来公司战略的发展,最直接的例子,就是阿里云。
总结 总体来说,大数据如何为公司创造更大的价值,我认为可以从提升大数据集群的稳定性入手,更好的保证公司线上业务的稳定和运行。其次,可以更好的压榨和节约公司的大数据集群相关的机器资源,从而减少公司机器方面的采购成本。最后,就是通过大数据技术创新,通过技术来驱动业务的发展,当然这也是最难的一点,如果你能做到通过某种大数据技术的创新使得公司战略方面业务的成功,那么你的价值对于公司来说,将是无法估量的。
Ⅳ 如何在企业管理中应用大数据
在企业管理中应用大数据的大方向就是辅助企业决策,但是必须要深入到企业的各个应用场景,使大数据真正落地到企业。
Ⅳ 如何运用大数据降低企业成本
对于企业来说,要想借助于大数据来降低运营成本是一个重要的诉求,而通过大数据技术来降低运营成本的出发点也非常多,不同行业企业也要结合自身的实际情况来进行方案规划。当前很多企业利用大数据来构建自己的价值化考核体系,这是降耗提效的好方式。
所谓的大数据价值考核体系主要从提升员工的工作效率角度出发,同时辅助智慧化技术,以此来降低员工的工作难度,让员工在工作中能够获得更大的工作成就感,这也是当前智能化办公的重要诉求之一。大数据的价值化考核体系是一个非常庞大的体系,而且这个考核体系与行业有密切的关系,需要有一个专业的团队来进行开发和维护。
当前互联网企业的价值化考核体系做得普遍要好一些,一方面互联网企业有较强的技术支撑,另一方面互联网企业在人才结构上更合理,在新模式和新技术的推进和应用上有其天然的优势,所以对于很多传统企业来说,要想完成结构升级首先要从人才结构升级开始。
大数据对于企业资源的利用也有巨大的积极作用,通过大数据技术能够深度挖掘企业的各种运营数据,从而找出企业的一些管理和制度上的短板,这也会在一定程度上降低企业的运营成本。
关于如何运用大数据降低企业成本,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅵ 企业如何利用大数据做好自己的精准营销
一、认清趋势,了解行情,接受大数据理念。目前很多企业主对大数据营销还是处于迷茫期,观望状态,这是很艰难的阶段,但必须要深入了解,越深入越会明白大数据发展趋势,越会明白运用大数据的必要性,之前我们也有过介绍,大数据的发展趋势,大家可以爬楼学习。小编想说的是,如果再不下手,可能就晚了!
二、找对合作商,看准实力。到底谁能帮助你解决经营的难题?他会不会帮你制作一整套的营销方案,会不会设身处地的想你所想,知你所难,会不会随时关注你的方案有没有效果,随时调整以达到最佳,这真的很重要!
三、运用大数据,解决你的经营难点,甩掉传统的经营模式,告别老,慢,贵的节奏,让你的营销团队智能化;先一步建立属于自己的数据库,抓取属于自己的客户数据,运用前沿产品,把你的广告用眨眼间的光景投放出去,做到新,快,省。
Ⅶ 如何充分利用好大数据
就目前而言,几乎所有行业:医疗保健,制造业,金融业,零售业都在发生数字变化,而且这个名单还在继续。如果用好大数据可以预测好未来的发展,那么大家知道不知道如何充分的利用好大数据呢?这就需要建构一个新的结构,以及做好协作工作。
现在人工智能是很普及的,机器人亦是如此,在不久的将来,随着销售和客户服务的自动化,未来的发展重心将更高的价值放在人与人之间的互动上,当然,人们还会保持对提出服务的期望。这样才能够让自己的需求得到充分的满足。如果利用分析的强大功能去进行大数据分析,那么企业将能够对这些海量数据进行分析并分类,机器就会以惊人的速度从中学习。这样就能够获得极佳的发展方向。从而推动科技的发展。
用好大数据必须建构一个新结构
大数据的分析需要一个新的结构,虽然公司将拥有了比以往更多的数据,但是要想进行大数据的分析,就需要重新考虑企业的结构,现如今,随着公司适应技术不断变化,转型的速度将推动现代企业模式的发展。企业必须开始以反向思维的方式运转,不能够继续使用新的企业结构。
当然,企业还应该培养分析文化,这是最重要的一件事情,企业培养分析文化就需要舍弃传统的决策层次结构。这句是要求企业中的每个人都能够做出基于事实的决策的能力。如果询问一线员工,包括销售人员和生产车间员工,他们使用哪些数据做出决策。通过这些问题才能够让未来的发展路线变得更加通透。
对于那些扁平化企业结构并消除决策障碍的公司将变得更加敏捷,因此使得这类公司更具有竞争力。我们需要全面拆除企业结构中的某些局部结构,这种转变能够使企业运作发生了巨大变化。使得企业有一个比较民主的氛围。
大数据的适应需要做好协作工作
传统的层次是公司的常态,但是并不是公司必须改变的唯一方面。对于扁平化的企业结构需要合作水平必须提高,必须培养共享协作的文化。这样才能够让公司更具有凝聚力。企业还应选择具有多学科背景的管理工作人员,并要求他们查看不相关的业务并借鉴想法。这将有助于鼓励合作并吸收新的和创新的想法。
要想发展这种文化的作用,需要确定如何平衡个人贡献与团队合作。如果每个团队成员没有平等的贡献,那么过于紧密地合作可能会导致个人的灵感流失。就个人而言,专业人士需要在个人安静的时间来完成工作。考虑到这些要素,理想的企业模式将能够加快决策速度,减少层级的监督,并产生一种重视个人贡献的协作工作环境。这样才能够让人们更加团结。
看完上述的内容,想必大家已经知道了如何充分利用好大数据了吧,大数据的使用需要建构一个新结构和做好协作工作,这样才能够充分使用大数据,才能够对未来做好精准预测。
Ⅷ 企业如何运用大数据战略快速发展
今天,大数据已经成为经济发展的“水电煤”,成为赋能经济发展的新引擎,因此,在数字经济环境下,实现数据资产化是各领域行业抢占市场先机最重要的着力点。
全球知名调研机构IDC此前曾对2000位跨国企业CEO做过一项调查,结果显示到2018年,全球1000强企业中的67%、中国1000强企业中的50%都将把数字化转型作为企业的战略核心。对于传统企业尤其是传统的中小企业而言,数字化转型已经不再是一道选择题,而是一道生存题
。
第一步:数据集成——为您构建单一数据源
采集来自网络爬虫、结构化数据、本地数据、物联网设备、人工录入五个数据源的数据,为客户提供定制化数据采集。目的是根据客户的需求,定制数据采集,构建单一数据源。
第二步:数据管理——建立一个强大的数据湖
探码科技通过web(网页)数据采集、和工厂设备数据采集通过这两种数据采集的方式,从数据源中提取结构化和非结构化数据。通过数据标注/清洗、数据转换、数据治理对提取的数据进行处理,最后快速输出数据构建数据湖。
第三步:数据应用——发挥数据价值
将数据湖中通过清洗整合的数据,根据客户需求、行业背景、用户体验生成真正有价值的SaaS系统、可视化系统、工业APP,实现数据实体化、应用化,将数据应用到客户的商业运营中,助力客户实现信息化管理。
更多企业大数据战略请访问探码科技官网
Ⅸ 创业公司如何利用大数据形成优势
创业公司如何利用大数据形成优势
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物,随着云时代的来临,大数据也吸引了越来越多的关注。
大数据的价值体现在以下几个方面:1对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;2 做小而美模式的中长尾企业可以利用大数据做服务转型;3面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
对于创业公司而言,利用大数据形成自己的独特竞争优势对公司的发展十分有利。首先,确定你的数据客户,客户数据的来源可能是多方面的,不用局限于某个行业或领域中;找出用户所需的数据,哪些见解会对用户的日常行为有直接的影响,以及如何将这些信息收集?它是否可以成为结构化,是否需要立即分析这些信息,或者是否需要让内容变得更加清晰?数据是没有任何背景也没有上下文可依靠,因此创业者必须把它变成对客户有意义的内容;当确定了数据客户和所需数据之后就可以建立基础设施来收集数据或者支付第三方工具,利用它提炼出数据。
大数据在今后公司的发展中愈发重要,猿团创业云提醒,即使创业公司对将数据转化成产品不感兴趣,他们也需要利用这些数据作为自己独特的竞争优势,如果他们不这样,那么他们就会落后于竞争对手,失去竞争力。
Ⅹ 企业如何实现对大数据的处理与分析
企业如何实现对大数据的处理与分析
随着两化深度融合的持续推进,全面实现业务管理和生产过程的数字化、自动化和智能化是企业持续保持市场竞争力的关键。在这一过程中数据必将成为企业的核心资产,对数据的处理、分析和运用将极大的增强企业的核心竞争力。但长期以来,由于数据分析手段和工具的缺乏,大量的业务数据在系统中层层积压而得不到利用,不但增加了系统运行和维护的压力,而且不断的侵蚀有限的企业资金投入。如今,随着大数据技术及应用逐渐发展成熟,如何实现对大量数据的处理和分析已经成为企业关注的焦点。
对企业而言,由于长期以来已经积累的海量的数据,哪些数据有分析价值?哪些数据可以暂时不用处理?这些都是部署和实施大数据分析平台之前必须梳理的问题点。以下就企业实施和部署大数据平台,以及如何实现对大量数据的有效运用提供建议。
第一步:采集数据
对企业而言,不论是新实施的系统还是老旧系统,要实施大数据分析平台,就需要先弄明白自己到底需要采集哪些数据。因为考虑到数据的采集难度和成本,大数据分析平台并不是对企业所有的数据都进行采集,而是相关的、有直接或者间接联系的数据,企业要知道哪些数据是对于战略性的决策或者一些细节决策有帮助的,分析出来的数据结果是有价值的,这也是考验一个数据分析员的时刻。比如企业只是想了解产线设备的运行状态,这时候就只需要对影响产线设备性能的关键参数进行采集。再比如,在产品售后服务环节,企业需要了解产品使用状态、购买群体等信息,这些数据对支撑新产品的研发和市场的预测都有着非常重要的价值。因此,建议企业在进行大数据分析规划的时候针对一个项目的目标进行精确的分析,比较容易满足业务的目标。
大数据的采集过程的难点主是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片也是需要深入的思考问题。
第二步:导入及预处理
数据采集过程只是大数据平台搭建的第一个环节。当确定了哪些数据需要采集之后,下一步就需要对不同来源的数据进行统一处理。比如在智能工厂里面可能会有视频监控数据、设备运行数据、物料消耗数据等,这些数据可能是结构化或者非结构化的。这个时候企业需要利用ETL工具将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,将这些来自前端的数据导入到一个集中的大型分布式数据库或者分布式存储集群,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。对于数据源的导入与预处理过程,最大的挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
第三步:统计与分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。数据的统计分析方法也很多,如假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。在统计与分析这部分,主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
第四步:价值挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
总结
为了得到更加精确的结果,在大数据分析的过程要求企业相关的业务规则都是已经确定好的,这些业务规则可以帮助数据分析员评估他们的工作复杂性,对了应对这些数据的复杂性,将数据进行分析得出有价值的结果,才能更好的实施。制定好了相关的业务规则之后,数据分析员需要对这些数据进行分析输出,因为很多时候,这些数据结果都是为了更好的进行查询以及用在下一步的决策当中使用,如果项目管理团队的人员和数据分析员以及相关的业务部门没有进行很好的沟通,就会导致许多项目需要不断地重复和重建。最后,由于分析平台会长期使用,但决策层的需求是变化的,随着企业的发展,会有很多的新的问题出现,数据分析员的数据分析也要及时的进行更新,现在的很多数据分析软件创新的主要方面也是关于对数据的需求变化部分,可以保持数据分析结果的持续价值。