导航:首页 > 数据处理 > 做大数据需要哪些知识

做大数据需要哪些知识

发布时间:2022-04-30 23:41:05

⑴ 想成为一名大数据工程师,需要具备哪些技能

1、 掌握至少一种数据库开发技术:Oracle、Teradata、DB2、Mysql等,灵活运用SQL实现海量数据ETL加工处理。

2、 熟悉Linux系统常规shell处理命令,灵活运用shell做的文本处理和系统操作。

3、 有从事分布式数据存储与计算平台应用开发经验,熟悉Hadoop生态相关技术并有相关实践经验着优先,重点考察Hdfs、Maprece、Hive、Hbase。

4、 熟练掌握一门或多门编程语言,并有大型项目建设经验者优先,重点考察Java、Python、Perl。

5、 熟悉数据仓库领域知识和技能者优先,包括但不局限于:元数据管理、数据开发测试工具与方法、数据质量、主数据管理。

6、 掌握实时流计算技术,有storm开发经验者优先。

关于想成为一名大数据工程师需要具备哪些技能的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑵ 大数据需要学习什么样的知识

1、大数据专业,一般是指大数据采集与管理专业;

2、课程设置

大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。

3、核心技术

(1)大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Maprece、分布式数据库HBase、分布式数据仓库Hive。

(2)关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。

(3)分布式数据处理。详细介绍分析Map/Rece计算模型和Hadoop Map/Rece技术的原理与应用。

(4)海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。

(5)物联网与大数据。详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。

(6)文件系统(HDFS)。详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。

(7)NoSQL。详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。

4、行业现状

今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如网络、腾讯、淘宝、新浪等公司已经成为标准。而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。

在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

⑶ 大数据好学吗,大数据需要学习什么技术

大数据目前发展是比较好的,特别是在鸿蒙发布后物联网时代的到来下,大数据相关岗位将会更多。想要转行的话,大数据的确是个很好的方向。既然想要转行大数据,那么肯定要具备大数据的相关知识与技能。

这里介绍一下大数据要学习和掌握的知识与技能:

①java:一门面向对象的计算机编程语言,具有功能强大和简单易用两个特征。

②spark:专为大规模数据处理而设计的快速通用的计算引擎。

③SSM:常作为数据源较简单的web项目的框架。

④Hadoop:分布式计算和存储的框架,需要有java语言基础。

⑤spring cloud:一系列框架的有序集合,他巧妙地简化了分布式系统基础设施的开发。

⑤python:一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。

大数据可以从事的职业:

①大数据维护、研发、架构工程师方向

所涉及的专业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;

②大数据挖掘、分析方向

所涉及的专业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

⑷ 学大数据需要什么基础知识和能力

1.计算机基本理论知识

了解计算机的基本原理,计算机的发展历史等计算机的基本常识和理论。

示例说明

总结:以上条件并不是一定要达到很高的标准,只要基本都熟悉,都有印象,能够简单运用即可。

⑸ 大数据初学者应该怎么学

大数据大家一定都不陌生,现在这个词几乎是红遍了大江南北,不管是男女老幼几乎都听说过大数据。大数据作为一个火爆的行业,很多人都想从事这方面相关的工作,所以大家就开始加入了学习大数据的行列。

目前,市面上不仅是学习大数据的人数在增加,随之而来的是大数据培训机构数量的迅速上升。因为很多人认为这是一门难学的技术,只有经过培训才能够很好的学习到相关技术,最终完成就业的目的。其实,也并不都是这样的,学习大数据的方法有很多,只有找到适合自己的就能够达到目的。

那么,大数据初学者应该怎么学?

1、如果是零基础的初学者,对于大数据不是很了解,也没有任何基础的话,学习能力弱,自律性差的建议选择大数据培训学习更有效;

2、有一定的基础的学员,虽然对于大数据不是很了解,但有其它方面的编程开发经验,可以尝试去选择自学的方式去学习,如果后期感觉需要大数据培训的话再去报名学习;

3、就是要去了解大数据行业的相关工作都需要掌握哪些内容,然后根据了解的内容去选择需要学习的大数据课程。

大数据学习路线图:

⑹ 学大数据需要什么基础

说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。

⑺ 大数据都需要学习什么

大数据专业是一项技术的学习方向,该专业是交叉性学科,学习内容涵盖较广,其中以统计学、数学、计算机为三大支撑柱学科,并以生物、医学、环境科学、经济学、管理学等作为辅助拓展。除此之外还需要学习数据采集、数据分析、数据处理软件及计算机编程语言等。不同的工作岗位与方向,需要从事的工作也不是一样的,因此催生出了许多职位。较为常见的大数据发展方向是大数据开发、大数据分析。

回过头来我们看看学习大数据需要的基础

1、java SE、EE(SSM)
90%的大数据框架都是Java写的
2、MySQL
SQL on Hadoop
3、Linux
大数据的框架安装在Linux操作系统上

- 需要学什么

大数据离线分析

一般处理T+1数据(T:可能是1天、一周、一个月、一年)
a、Hadoop :一般不选用最新版本,踩坑难解决
(common、HDES、MapRece、YARN)
环境搭建、处理数据的思想
b、Hive:大数据的数据仓库
通过写SQL对数据进行操作,类似于MySQL数据库的sql
c、HBase:基于HDFS的NOSQL数据库
面向列存储
d、协作框架:
sqoop(桥梁:HDFS《==》RDBMS)
flume:搜集日志文件中的信息
e、调度框架
anzkaban
了解:crotab(Linux自带)
zeus(Alibaba)
Oozie(cloudera)
f、前沿框架扩展:
kylin、impala、ElasticSearch(ES)


大数据实时分析

以spark框架为主
Scala:OOP(面向对象程序设计)+FP(函数是程序设计)
sparkCore:类比MapRece
sparkSQL:类比hive
sparkStreaming:实时数据处理
kafka:消息队列
前沿框架扩展:flink
阿里巴巴:blink

大数据机器学习

spark MLlib:机器学习库
pyspark编程:Python和spark的结合
推荐系统
python数据分析
python机器学习

⑻ 大数据分析需要学习什么知识呀

数据分析所需要学习掌握的知识:

对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。

对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。

数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。

对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

⑼ 学大数据需要具备什么基础

第一、计算机基础知识。计算机基础知识涉及到三大块内容,包括操作系统、编程语言和计算机网络,其中操作系统要重点学习一下Linux操作系统,编程语言可以选择Java或者Python。

如果要从事大数据开发,应该重点关注一下Java语言,而如果要从事大数据分析,可以重点关注一下Python语言。计算机网络知识对于大数据从业者来说也比较重要,要了解基本的网络通信过程,涉及到网络通信层次结构和安全的相关内容。

第二、数据库知识。数据库知识是学习大数据相关技术的重要基础,大数据的技术体系有两大基础,一部分是分布式存储,另一部分是分布式计算,所以存储对于大数据技术体系有重要的意义。

初学者可以从Sql语言开始学起,掌握关系型数据库知识对于学习大数据存储依然有比较重要的意义。另外,在大数据时代,关系型数据库依然有大量的应用场景。

第三、数学和统计学知识。从学科的角度来看,大数据涉及到三大学科基础,分别是数学、统计学和计算机,所以数学和统计学知识对于大数据从业者还是比较重要的。

从大数据岗位的要求来看,大数据分析岗位(算法)对于数学和统计学知识的要求程度比较高,大数据开发和大数据运维则稍微差一些,所以对于数学基础比较薄弱的初学者来说,可以考虑向大数据开发和大数据运维方向发展。

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

⑽ 大数据工程师需要学习哪些

阅读全文

与做大数据需要哪些知识相关的资料

热点内容
怎么代理一堆儿童用品 浏览:322
前男友发信息说真不知道你想什么 浏览:239
打篮球技术不好被排挤如何训练 浏览:387
涉嫌股票交易异常多久自动解封 浏览:908
安阳家具市场什么时候放假 浏览:750
2019考科一电脑程序怎么用 浏览:589
八珍矿泉水怎么代理 浏览:421
直播怎么上不了橱窗产品 浏览:635
技术咨询公司怎么经营 浏览:199
图书代理如何做 浏览:936
数据挖掘的商业价值是什么 浏览:59
健身塑形产品怎么买 浏览:844
如何查个人登记信息 浏览:208
欣赏相片用什么产品 浏览:805
c程序怎么实现排列 浏览:297
为什么微信收钱要填信息 浏览:621
如何查看微信小程序审查元素 浏览:325
测试程序怎么清除不良 浏览:671
上海高端灯具市场有哪些 浏览:419
菜市场卖菜用什么货架 浏览:51