导航:首页 > 数据处理 > 如何学习大数据

如何学习大数据

发布时间:2022-04-28 18:48:55

㈠ 怎么学习大数据工程

第1阶段:掌握Java Web数据可视化


你需要掌握Java服务器端技术,前端可视化技术,数据库技术,这个阶段主要是储备大数据的前置技能,当然你已经可以从事数据可视化工程师的工作了,但还不能算真正入门大数据。


第2阶段:学会 Hadoop 核心及生态圈技术栈


这部分涵盖的技术比较多,像 HDFS 分布式存储、MapRece、Zookeeper、Kafka等你都得掌握,掌握后可以去从事 ETL 工程师等一些大数据的岗位,但是知识储备还不够完整。


第3阶段:搞定计算引擎及分析算法


计算引擎我建议是 Spark 和 Flink 都能熟练使用,虽然现在一些企业还在用 Spark,但未来 Flink 一定会成为主流。学到这,你已经具备相对完整的大数据技能,能从事一些高薪的岗位了,像大数据研发工程师、推荐系统工程师、用户画像工程师等。

㈡ 大数据初学者应该怎么学

大数据大家一定都不陌生,现在这个词几乎是红遍了大江南北,不管是男女老幼几乎都听说过大数据。大数据作为一个火爆的行业,很多人都想从事这方面相关的工作,所以大家就开始加入了学习大数据的行列。

目前,市面上不仅是学习大数据的人数在增加,随之而来的是大数据培训机构数量的迅速上升。因为很多人认为这是一门难学的技术,只有经过培训才能够很好的学习到相关技术,最终完成就业的目的。其实,也并不都是这样的,学习大数据的方法有很多,只有找到适合自己的就能够达到目的。

那么,大数据初学者应该怎么学?

1、如果是零基础的初学者,对于大数据不是很了解,也没有任何基础的话,学习能力弱,自律性差的建议选择大数据培训学习更有效;

2、有一定的基础的学员,虽然对于大数据不是很了解,但有其它方面的编程开发经验,可以尝试去选择自学的方式去学习,如果后期感觉需要大数据培训的话再去报名学习;

3、就是要去了解大数据行业的相关工作都需要掌握哪些内容,然后根据了解的内容去选择需要学习的大数据课程。

大数据学习路线图:

㈢ 大数据应该怎么学有哪些要求

大数据课程知识点较多,学起来有一定难度!

“大数据”就是一些把我们需要观察的对象数据化,然后把数据输入计算机,让计算机对这些大量的数据进行分析之后,给出我们一些结论。

大数据学习内容主要有:

①JavaSE核心技术;

②Hadoop平台核心技术、Hive开发、HBase开发;

③Spark相关技术、Scala基本编程;

④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;

⑤大数据项目开发实战,大数据系统管理优化等。

你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。

北大青鸟中博软件学院大数据毕业答辩

㈣ 大数据怎么学习

第一阶段:大数据技术入门

1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。

2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令操作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用操作,磁盘基本管理命令,内存使用监控命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手操作,将理论付诸实践。

3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。

第二阶段:海量数据高级分析语言

Scala是一门多范式的编程语言,类似于java,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的操作。

第三阶段:海量数据存储分布式存储

1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。

2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际操作才能熟练。

第四阶段:海量数据分析分布式计算

1HadoopMapRece分布式计算:是一种编程模型,用于打过莫数据集的并行运算。

2Hiva数据挖掘:对其进行概要性简介,数据定义,创建,修改,删除等操作。

3Spare分布式计算:Spare是类MapRece的通用并行框架。

第五阶段:考试

1技术前瞻:对全球最新的大数据技术进行简介。

2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数据技能认证书。

上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。

㈤ 怎么自学大数据

自学大数据学习路线:(前提:以Java语言为基础)

总共分为四个模块:

㈥ 如何学习大数据计算

1、了解大数据的理论知识


学习一门课程,首先你对这门课程要有简单的了解,比如说要先学习这门课程的一些专业术语,学习一些入门的概念,知道这门课程是做什么的,主要学习的有那些知识。学习大数据开发也是一样,你要知道什么是大数据,一般大数据主要运用在那些领域。避免自己在对大数据一无所知的情况下就开始盲目学习。


2、计算机编程语言的学习


对于0基础的学员来说,开始入门可能不是那么容易,需要学习大量的理论知识,阅读枯燥的教材。因为要掌握一门计算机编程语言,大家都知道计算机编程语言有很多,比如:R,C++,JAVA等等。


3、大数据相关课程的学习


经过一段时间的基础学习之后,我们对编程语言也已经基本掌握了,接下来就可以进行大数据部分的课程学习了。大数据行业真正大数据,82%主讲都是hadoop、spark生态体系、storm实时开发。


4、实战训练


可以帮助我们更的理解所学的内容,同时对相关知识加强记忆。在以后的实际运用中,可以更快的上手,对于相关知识该怎么用也有了经验。

㈦ 初学者如何高效学习大数据技术

大数据相比大家一定都不陌生,很多小伙伴一定也想学习大数据技术,从事这方面的工作。因为近些年大数据是非常火爆的一个行业,之未来的发展前景也被大家所看好,所以也吸引了很多人前来学习大数据技术。
那么,大数据怎么学习比较好呢?
首先,小编认为大家需要做的就是去选择一个比较适合自己的学习方式,目前市面上主要是自学和培训俩种方式。
自学,相对来说是比较适合有一定的编程基础的小伙伴的,并且自律性也要比较强才行,否则是很那坚持学习下去的,很多人都是因为没有自律性导致后期逐渐的放弃学习。
培训,不管是有基础还是零基础的都比较适合,只要想学习都是可以的,但前提是你必须要满足年龄和学历的一个要求才行。
其次,就是在学习的过中应该如何对待,小编这里一共总结了下边几个方面的,希望可以帮助大家。
1、遇到问题一定要及时解决,在解决的过程中先自己试着去解决,如果解决不了就去多问问老师,看看是怎么解决的;
2、多和同学之间进行交流,在学习中有什么疑问和同学多进行交流,这样不仅可以互相帮忙学习,还可以不断体系学习效率;
3、多敲代码,多练习。编程学习主要是动手能力,所以大家一定要多去练习,只有练习之后你才能更好的发现问题并解决。

㈧ 想要学习大数据,应该怎么入门

记住学到这里可以作为你学大数据的一个节点。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

㈨ 零基础学习大数据怎么学

【导语】如今大数据发展得可谓是如日中天,各行各业对于大数据的需求也是与日俱增,越来越多的决策、建议、规划和报告,都要依靠大数据的支撑,学习大数据成了不少人提升或转行的机会,那么零基础学习大数据怎么学呢?

1、学习大数据我们就要认识大数据,大数据(big
data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。

2、学习有关大数据课程的内容:

第一阶段:Java语言基础(只只需要学习Java的标准版JavaSE就可以了,做大数据不需要很深的Java
技术,当然Java怎么连接数据库还是要知道);

第二阶段:Linux精讲(因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑);

第三阶段:Hadoop生态系统(这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。)

第四阶段:strom实时开发(torm是一个免费并开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流,像Hadoop批量处理大数据一样,Storm可以实时处理数据。Storm简单,可以使用任何编程语言。)

第五阶段:Spark生态体系(它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。);

第六阶段:大数据项目实战(大数据实战项目可以帮助大家对大数据所学知识更加深刻的了解、认识,提高大数据实践技术)。

关于零基础学习大数据怎么学,就给大家介绍到这里了,其实想要学好大数据,成为优秀的大数据工程师,还是需要大家多多进行自我技能提升,多多进行日常问题处理,加油!

㈩ 零基础应该如何学习大数据

首先,学习大数据我们就要认识大数据,大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。

其次,学习有关大数据课程的内容,第一阶段:Java语言基础(只只需要学习Java的标准版JavaSE就可以了,做大数据不需要很深的Java 技术,当然Java怎么连接数据库还是要知道);

第二阶段:Linux精讲(因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑);

第三阶段:Hadoop生态系统(这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。)

第四阶段:strom实时开发(torm是一个免费并开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流,像Hadoop批量处理大数据一样,Storm可以实时处理数据。Storm简单,可以使用任何编程语言。)

第五阶段:Spark生态体系(它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。);

第六阶段:大数据项目实战(大数据实战项目可以帮助大家对大数据所学知识更加深刻的了解、认识,提高大数据实践技术)。

关于零基础应该如何学习大数据,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与如何学习大数据相关的资料

热点内容
程序员节送什么水果 浏览:661
期货短期交易看多少分钟 浏览:625
dwg藏有哪些信息 浏览:183
别人文章中数据如何处理 浏览:569
蜜植素怎么查是不是代理 浏览:657
个人收汇交易编码是多少 浏览:839
世界信教人数有多少最新数据 浏览:327
财务会计信息化应用哪里报名 浏览:49
c程序最前面应该写什么 浏览:504
如何有效管理工作群信息 浏览:718
程序的别名有什么用 浏览:408
产品拍摄如何防止反光 浏览:335
借贷要提供哪些信息 浏览:726
档案技术服务属于什么类别合同 浏览:402
有赞微信小程序有什么区别 浏览:866
取保候审程序如何走 浏览:130
我想卖电动车怎么加盟代理 浏览:565
做铝合金代理怎么样 浏览:558
数据中心电费多少 浏览:268
如何做好党政信息工作讲稿 浏览:440