导航:首页 > 数据处理 > 数据如何变现

数据如何变现

发布时间:2022-04-28 10:09:41

① 张涵诚:关于数据变现的十种商业模式

进入2016、数据,已经成为每一个行业和各种业务职能领域重要的生产因素和变革力量。数据的积累、合作、整理、挖掘、利用是现代企业所必需的基本素养,没有它,你的企业将无力面对大数据时代的竞争。我们对于海量数据的挖掘和运用,也预示着新一波生产效率增长和消费者个性化需求的到来。今年我们看到,很多做大数据的公司已经从实际的项目中找到了做大数据的价值变现的路径,探索出了正确的大数据变现之路。
但依然有很多的问题困扰着企业的决策者和创业者,笔者结合我们最新的研究实践总结了如下十种商业模式和同行分享。
数据+物体=智能
(未来人工智能是数据变现的最好方式,当前2B的智能买单意愿更强,个人还比较难)

从国内外的互联巨头的投资动向不难看出,传统的盈利的大数据公司开始涉足硬件市场,利用其固有的软件技术整合硬件厂商快速的占据市场的有利位置。硬件是连接线上与线下的重要组成手段。所以笔者以为智能硬件这才是大数据正在的用武之地,才是大数据最终的价值所在!
毫无疑问,数据支持到搜索,购物和社交,这是变现的绝佳方式。
GFBAT(Google, Facebook, Bai, Alibaba, Tencent,总市值几万亿)的数据变现最早的企业
网络加工数据变成有价值的可供搜索的信息,进而产生广告价值,阿里巴巴让商品信息成为购物的入口,供人买卖,生产交易价值。腾讯,建立人和人的关系,产生广告价值,成为社交入口。非常肯定的说这是数据1.0。

数据征信评价机构(通过数据加快贷款、通过数据降低风险)

BAT巨头纷纷进入大数据征信市场,也正是看中了这千亿级的蓝海市场。据平安证券估计:中国征信行业未来市场规模将达千亿元,其中企业征信市场规模有百亿元,个人征信市场规模有千亿元。有着国企背景的中诚征信则更加progressive,给出了未来市场过万亿的预期。
美国征信市场由传统征信机构、商业信息服务机构、创新型的金融科技企业三种力量组成。
传统征信机构以全球最大的个人征信机构Experian、全球第二大征信机构Equifax、征信数据挖掘公司FICO为代表,基于掌握的消费者和支付数 据提供征信服务。
商业信息服务机构Dun & Bradstreet以庞大的全球商业数据库-全世界最大的企业信用数据库知名,基于其全球化的发展战略,主推风险管理服务(贡献营收62.7%)和销售及市场拓展(37.3%),利用征信业务的规模经济获取高毛利率。
创新金融企业Zestfinance则以技术输出为主要手段,利用传统的信贷记录等数据、大量交易信息、法律记录、租赁信息、网购信息等数据(第三方、网络、调研),使用机器学习的大数据分析模型进行信用评估,取得不错的实效,将信贷的成本降低了25%。
数据征信评价机构
2016年度,国内企业征信领域企业数据库涵盖数据量前5名依次为:1.益博睿2.邓白氏3.信用视界4.鹏元征信5.棱镜征信。依托大数据整合手段,可以预见在未来十几年内,中国必将出现几家对市场经济健康运行发挥巨大作用的规模化企业征信机构。
基因大数据指导生命科学

目前华大基因净利润在1亿元左右,不过深圳不少基金经理认为,作为基因测序的龙头,华大基因上市估值可能一步到位,其市值或直接到1000亿左右。华大基因的招股说明书显示,2015年上半年归属于母公司的净利润为7565万元,2014年度,2013年度的净利润分别为2456万元、13588万元。
生命经济的发展才是未来:面向人类最根本需求的经济形态和创新会是最大趋势。实现从后工业时代到生命经济时代的转变,需要大众转变观点、政策扶持以及科研机构的多方推动。未来,以国家基因库作为支点,围绕生命科学发展的产业,会走入从科学研究到产业化的发展之路,最终实现为人类服务的目标。
在未来社会发展上,影响人类社会经济和生命质量上有三个重大的问题。一是出生缺陷,二是代谢性疾病和心脑血管,三是肿瘤。这三个疾病导致人类医疗费用的支出70%到80%,而这三个疾病的防控唯一的办法就是用现代科技和大数据的支撑才能够解决这样的问题。
我们依靠基因科学技术,产生的大数据来引领着未来的大发展,来支撑着小康社会建设,以一个前所未有的高科技来作为支撑和引领我们一定能在某些领域走在世界前沿。
通过大数据分析为投资提供服务在各行各业并不少见,在传统股票领域,常见的数据分析指标有RSI相对强弱指标,KDJ随机指标,MACD指数平滑异同平均线等。这些指标常被用于分析股票走势,以提供给用户做投资参考。
共享经济最大程度释放数据信息价值。专业领域的数据共享者

这类代表性企业包括,滴滴,UBER,Airbnb、小猪,总市值在几千亿规模,未来会有更大的企业加入

我认为共享经济实际上是大数据2.0。这个在今年的数博会,克强总理的发言原文:“ 【只有共享经济数据才能无限放大】此外,总理认为我们还要发展共享经济,因为只有共享,数据才能无限放大,这不仅仅是做加法、乘法,而且共享经济作为新业态假以时日,将为中国经济注入强大力量。同时共享经济也是分享经济,让每个人都有平等创业的机会,每一行都能出状元。在“双创”方面,未来这些企业中将会诞生小巨人。此外,共享经济让人人都能受益。中国的“宽带中国”建设就是要拉近城乡、东西部的数字鸿沟,而提速降费也是拉近数字鸿沟的方式和手段。
为什么这类企业是数据变现排名第二的公司呢,因为这类企业的数据因为共享被无限的放大。第一个是所有权的价值信息到使用权的价值信息,所有权的价值信息可能在网上就一次,CPS,但如果共享就不断的把同一辆车可以坐无限多次。第二个是对于自身的价值到信息对于其他的行业价值,现在是企业间的共享,共享经济来了以后会形成整个行业里面,产业里面的数据共享,也就是企业跟企业之间的数据怎么交换,怎么共享,所以这样在企业之间数据的交换价值也会被无限的放大。比如滴滴一辆车每天都帮滴滴产生收益。第三个是单一的数据价值到多元的数据价值,这就变成了数据*数据的价值。比如说我是银行的数据价值,但银行的数据价值活性很差,银行数据维度比较差,社交数据就比较鲜活,所以单一的数据价值对于银行来讲是有作用的,但是银行和社交的数据加起来,它的数据的流通性及我们叫跨界融合数据的价值数据也会被无限的放大。再比如滴滴的数据可以用来做保险。
专业的数据加工者数据研究 报告(数据支持到咨询研究类型的企业,如汤森路透、万德、尼尔森、艾瑞、易观)

这类企业深入加工数据,针对一些对数据决策依赖比较深入的企业提供服务。金融、电商、新经济领域。
汤森路透得总裁吉姆·史密斯说:大数据对汤森路透非常重要。从某些方面来说,我们已经长期在管理大型复杂的数据了。我们面对的挑战与其他大型科技公司不一样,过去近25年里,我们一直在管理和整合我们所服务的不同行业领域的各类数据。我们投入了大量的资金来整合众多的数据,集成数据库,让客户可以简单地掌握和搜索所需要的数据资料,而不必再花时间了解来源或复杂性。
万德数据服务(Datafeed)这样描述自己:中国市场的精准金融数据服务供应商,为量化投资与各类金融业务系统提供准确、及时、完整的落地数据,内容涵盖:股票、债券、基金、衍生品、指数、宏观行业等各类金融市场数据,助您运筹帷幄,决胜千里
为客户提供标准的结构化数据,支持模块化订阅,同时满足客户个性定制需求,实现合作伙伴式的落地数据服务。
艾瑞用户行为产品是由艾瑞咨询自主研发,基于中国PC终端和移动智能终端的用户行为研究产品。通过深入分析多维度PC及移动网民的行为特征,及竞争对手的数据情况,为互联网、移动互联网、广告公司、广告主及电信等行业客户,将PC及移动互联网需求量化呈现,是真实反映中国互联网及移动互联网市场发展状况的数据产品。
这类企业深度的研究报告+个性化的数据定制+行业领域的专家智慧积累成就了这个行业的客户也成就了自己。
大数据咨询分析加工服务(埃森哲:数据人工加工、数据堂)
当企业第一方数据价值被掏空,企业需要发展外部数据弥补自身数据的不足,需要采集第三方数据开拓新的业务,发展新的客户的时候,企业就提出了数据采购需求,但一般来说这些数据需要爬或者定向采购,当数据源不能满足企业需求的时候就需要数据加工和分析服务。2015年,美国对信息服务的总需求预计超过6,000亿美元。
利用数据分析获得的认识正逐渐成为企业的一大竞争优势。企业利用数据分析结果实施、优化决策。任何拥有大型客户数据库的企业都可能发展成为这一场信息新博弈中的重要势力。过去,数据市场仅仅局限于传统的市场调查与数据服务公司。
专业的数据数据营销者:精准营销DSP+短信、email、私信(暴力广告,获得线索,客单价较高的产品,如地产)

DSP行业产业链上的角色包括广告主、广告代理商、DSP、广告交易平台、DMP、SSP、广告网络、广告联盟、媒体以及受众。
广告主或代理商通过DSP进行投放,DSP帮助广告主或代理商通过搜索引擎、广告网络以及广告联盟进行投放,同时DSP可以接入多个广告交易平台或可以接入多个SSP来获取媒体受众资源,而广告主则通过DSP对广告交易平台中的流量进行基于受众的购买。
2012年是中国DSP发展的元年,经过过去3年多的酝酿,去年出现了大量的DSP服务商和技术提供商。并且在一些巨头的广告交易平台的推出影响下,DSP所能够投放的广告的量迅速增长。2013年更多的广告平台出现、更多的媒体接入这些平台,同时提升了广告供给量、刺激了广告主的兴趣,市场获得非常高速的增长。在市场上RTB的购买方式是主流。另外,移动端的DSP初露端倪,未来极具成长空间。
能够为广告主、代理公司提供全面服务的服务商,有艾维邑动、爱点击、璧合网络、传漾、好耶、互动通、晶赞科技、聚胜万合、派择、派瑞威行、品友互动、随视传媒、泰一指尚、新数网络、亿玛、亿赞普、易传媒、悠易互通等。
这不可能是独角兽,但第一方数据的加工利用绝对是最好的数据变现方式(每个企业都可以发掘自身企业数据的价值指导企业优化)

大数据在全球范围内的市场规模同样巨大,根据IDC 发布最新研究结果,预测到2018 年全球大数据技术和服务市场的2018 年的复合年增长率将达到26.4%,规模达到415 亿美元,是整个IT 市场增幅的6倍。从行业结构来看,大数据应用主要集中在金融、通信、销售和政府领域,在医疗和旅游行业也有应用,但占比相对较低。
短信、email、私信(暴力广告,获得线索,客单价较高的产品,如地产)
数据开放平台(如新浪数据开放平台、网络数据开放平台、腾讯数据开放平台等)

BAT开放平台的特点
一、腾讯的开放是产品层面的开放,核心资源不可能开放
二、网络的开放是技术层面的开放,过度开放,对网络来说是风险
三、阿里的开放是产业链的开放,但生态的封闭
十、大数据交易所,未来一切公司都是数据公司,一切都将数据化,那么每个公司都会有
一个数据合作部门,他们用来使内部数据和外部数据流通,产生价值

因此我本人非常看好这类公司,我认为数据的3.0我认为是数据交易,数据商品化是大数据产业生态走向文明的方式。现在数据都在线下交换,企业和企业之间,或者个人与个人之间进行交换,但这里面没有商品,数据商品出来之后是大数据的3.0,但是这个时间还需要10年左右。不过这样的部门,如在网络很早就有,主要来合作自己不能爬到的数据的价值。这看起来交易所要满足这些人集中交易数据的需求。实现公开的合法的数据买卖。目前这样的交易有如下几个形式
1)数据以在线云的方式提供API接口对外输出;
2)数据定向采购,线下交易;
这种模式永远存在,而且大家基于朋友的信任和很多利益的私密性,愿意私下进行数据交易,不愿意拿到台面上;
3)数据加工处理后在进行交易。
专门有数据加工的企业出现,
3、因此也成为了主要的数据变现方式
数据是生产资料,如同原油,在原油加工厂柴油、汽油、润滑油、化工品、化学品、精细化工品、

② 保险业三渠道让大数据红利变现

保险业三渠道让大数据红利变现

大数据时代,数据的价值究竟体现在哪里?保险公司正在用自己的探索给出答案。
据了解,泰康人寿、新华电商等,已率先开启与以BAT(网络、阿里、腾讯)为首的互联网巨头公司的数据合作,最普遍的就是将已有的保险客户数据与互联网公司的大数据进行匹配,完善保险客户的画像。同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
经过这些尝试,保险电商公司进行了更为有的放矢的后续操作,并初步尝到了“甜头”,不仅在营销环节,也在风控环节上。这些成果已包括,精准营销让广告投放的点击率提高360%以上,发现客户的赔付率与其芝麻信用呈现负相关关系,甚至建立骗保风险预估模型。
这仅是开始,新华电商副总裁杨亿认为,大数据将再造保险业价值链,涵盖从产品研发到营销、到理赔管理、再到资产管理的几乎全部环节。
数据与数据融合
互联网创新业务在业内处于领先地位的泰康人寿,对数据有明确定位,其董事长陈东升在2011年就提出“让数据产生红利”的方向。对于大数据,泰康总裁刘经纶认为主要有四大特征:首先是数据体量巨大,第二是数据类型繁多,第三是价值密度偏低,第四是处理的速度更快。
传统保险模式运作下,保险公司评估消费者的风险因素只有性别、年龄等简单维度,这也导致部分保险产品定价保守,且产品同质化。而在大数据时代,风险特征的描述数据极大丰富,保险公司可以通过大数据摸索更全面的风险特征,产品细分和个性化设计成为可能,并精细化风险管理和成本管控。
保险公司对于数据有本能的诉求,但简单获取数据违背商业原则,因此对数据的利用一般并不来自直接共享,而是与拥有用户大数据的互联网巨头公司之间进行数据合作,这在业内已经有了典型。
泰康人寿创新事业部业务发展部总经理毕海在今年6月份举行的第二届互联网大数据与精算创新论坛上表示,正在加深与腾讯、阿里等互联网巨头进行数据方面的合作。
近日也从新华保险的全资电商子公司新华世纪电子商务有限公司(下称“新华电商”)了解到,其正在与网络大数据合作;“大数据工场”是新华电商的三大定位之一。
同时,来自阿里金融保险事业部负责人的信息是,多家保险公司对其掌握的客户大数据表现出兴趣。
就数据合作而言,保险业与互联网公司,前者以客户获取、客户维护、客户风险评估为核心诉求,而后者的大数据在用户理解和用户洞察方面有核心优势,双方的业务结合点贯穿从营销到产品研发、再到理赔管理的全流程。
“引流”效果明显
在营销阶段,通过大数据方案,保险电商的交叉销售准确率得到提升。
通过与拥有海量客户社交数据及交易数据的互联网巨头进行大数据合作,泰康人寿的互联网创新产品正在朝精准定价的方向迈进,其从多维的甚至相对混乱的数据中进行筛查,决定保险产品是不是展现在用户面前,也就是实现精准营销。
做到这步很初级,互联网用户可能多少也都已有体会,经常在浏览网页时被推动自己关心或感兴趣的产品,但这点已很重要。
大数据+精准营销,已经被新华电商的一个案例证明,非常有效;至少在“引流”的作用上,精准营销有明显作用。毕竟,互联网业务关注的“流量”、“频率”、“价值的转换”三大要素中,“流量”为首。
已与网络大数据进行合作的新华电商,通过这种合作将保险客户的数据维度进一步丰富,让客户更立体,进一步确定出是谁在买保险,在买哪类保险,他们有什么特征。而事实也证明,这样的尝试已经初步体现出积极效益。
新华电商副总裁杨亿在日前召开的网络世界2015大会上介绍,其在和某大型保险公司的合作中,运用相关模型挖掘成功购买保险产品的高价值客户,分析高价值客户的客群特征,包括基本用户画像和上网行为等,并依此在全网扩充目标客群,最后做在线精准营销的广告投放。上线后的真实效果是,实验组广告点击率比对照组提升了361%。
杨亿称,这说明向同样规模的人群展示广告,经过大数据+精准营销,可以找到更多真正对保险感兴趣的目标客户,促成更多点击与转化。
发挥征信作用
大数据给保险电商的“甜头”没有止步于营销环节。对于以风控为核心竞争力的保险业来说,在理赔管理环节中,如何进一步发挥大数据价值也是重要课题。目前的尝试结果表明,在理赔管理中,大数据可以发挥保险征信的作用。
新华电商将网络对用户的大数据画像和新华保险的真实拒保数据进行融合,通过进行黑名单过滤、重大风险识别以及虚假信息挖掘,建立骗保风险预估模型,提升公司整体业务风险管理能力。
再比如,泰康既有的与阿里数据合作的一个结果表明,对客户的赔付率与其芝麻信用负相关。因此,具有明确数值的芝麻信用可以为其定义客户风险特征提供重要参考。
不仅如此,展望未来,杨亿称,大数据将再造保险价值链。
除了将对除了前述的营销阶段、理赔管理环节产生影响之外,其还将影响到产品研发和资产管理等重要环节。比如,在产品开发阶段,大数据助于预测出险概率、优化定价体系、并采集健康数据用于寿险价值链。

以上是小编为大家分享的关于保险业三渠道让大数据红利变现的相关内容,更多信息可以关注环球青藤分享更多干货

③ 如何理解“大数据” 数据质变的3个方面

如何理解“大数据”:数据质变的3个方面

大数据(Big Data),字面意思是“海量数据”,简单讲就是所涉及的数据量规模巨大到无法通过目前的主流技术和工具来处理,这里的“处理”涵盖了很多层含义:提取、存储、管理、分析、传输、预测等。

可是,这仅仅是对“大数据”的粗浅理解。

最早提出“大数据”概念的学科是“天文学”和“基因学”,这两个学科从诞生之日起就依赖于“基于海量数据的分析”方法。

大数据可以说是“计算机”和“互联网”结合的产物,计算机实现了数据的“数字化”;互联网实现了数据的“网络化”;两者结合才赋予了“大数据”生命力!

随着互联网如同空气、水、电一样无处不在地渗透入我们的工作和生活,加上移动互联网、物联网、可穿戴联网设备的普及,新的“数据”正在以指数级别的加速度产生。据说目前世界上90%的“数据”是互联网出现以后迅速产生的。

不过,抛开数据的海量化生产和存储这种表面现象,我们更加要关注的是由数据量变带来的质变,这种“质变”表现在以下3个方面:

1)数据思维

大数据时代带给我们的是一种全新的“思维方式”,思维方式的改变在下一代成为社会生产中流砥柱的时候就会带来产业的颠覆性变革!

- 分析全面的数据而非随机抽样;

- 重视数据的复杂性,弱化精确性

- 关注数据的相关性,而非因果关系。

历来的商业变革都是由“思维方式的转变”开始的,旧的经济体制和传统的商业理念面临新的商业思维逻辑的时候,如果大脑不能与时俱进,吸收并转变为顺应潮流的新思维,通过新思维重新组织企业组织的战略、结构、文化和各种策略,那么貌似强大的体魄反而变成了企业前进的累赘。

这种新思维颠覆巨头的案例最先发生在信息技术的传统领域,然后渗透到传统的商业领域:黑莓(Blackberry)、摩托罗拉、诺基亚、柯达、雅虎。。。案例比比皆是!

当然,这些企业的没落并不是因为没有“数据思维”,但他们都是被“新互联网思维”淘汰的昔日巨人。“数据思维”是最新的思想,其影响力还没有发展到导致巨头轰然倒塌。但是,如果不给予足够的重视,下一波没落王国的名单中,可能就会有你!

2)数据资产

大数据时代,我们需要更加全面的数据来提高分析(预测)的准确度,因此我们就需要更多廉价、便捷、自动的数据生产工具。除了我们在互联网虚拟世界使用浏览器、软件有意或者无意留下的各种“个人信息数据”之外,我们正在用手机、智能手表、智能手环、智能项链等各种可穿戴数码产品生产数据;我们家里的路由器、电视机、空调、冰箱、饮水机、吸尘器、智能玩具等也开始越来越智能并且具备了联网功能。

这些家用电器在更好地服务我们的同时,也在生产大量的数据;甚至我们出去逛街,商户的路由器,运营商的WLAN和3G,无处不在的摄像头电子眼,百货大楼的自助屏幕,银行的ATM,加油站以及遍布各个便利店的刷卡机都在收集和生产数据。

在互联网领域,我们喜欢说“入口”这个词,“入口”对应的直接意义是“流量”,而流量在互联网领域就意味着“金钱”,这种流量变现可能是广告,可能是游戏,也可能是电商。

在大数据时代,“入口”这个词还有更深刻的意义,那就是“数据生产的源头”,用户通过某个APP或者硬件产品满足某种需求的同事,也会留下一系列相关的“数据”,这些数据的合理使用可以让拥有这部分数据的企业获得更大的商业利益!

所以,在“大数据”时代,意识到“数据也是资产”的公司都已经开始在各个“数据生产的源头”进行布局,可能是一个解决刚兴需求的WEB网站,也可能是一个单纯的工具APP,还可能是一个可穿戴的数码产品!

3)数据变现

有了“数据资产”,就要通过“分析”来挖掘“资产”的价值,然后“变现”为用户价值、股东价值甚至社会价值。

大数据分析的核心目的就是“预测”,在海量数据的基础上,通过“机器学习”相关的各种技术和数学建模来预测事情发生的可能性并采取相应措施。预测股价、预测机票价格、预测流感等等。

“预测事情发生的可能性”继续往下延伸,就可以通过适当的“干预”,来引导事情向着期望的方向发展。比如亚马逊和所有的电商一样,都会基于对用户的喜好及消费能力分析来推荐“商品”,引导用户提高消费金额;Google等互联网巨头也会通过各种技术手段来试图向不同的用户展现不同的广告,并称之为“精准营销”,由此来提高点击率(公司收入);网游公司也会在运营工程中通过玩家行为数据的分析来及时调整游戏关卡及计费点等设计。

以上是小编为大家分享的关于如何理解“大数据” 数据质变的3个方面的相关内容,更多信息可以关注环球青藤分享更多干货

④ 大数据公司该如何从大数据中获取价值

大数据公司该如何从大数据中获取价值?

大数据是近些年来一直被热炒的话题,而它也的确对未来发展有着颠覆革新的力量。然而,如何从大数据上获取价值,却是一个很让人头疼的问题。对于这个问题,我们还需深入思考。
在人们意料之中,大数据产业在今天上升到了很高的地位!
8月6日,工信部的消息显示,大数据产业十三五规划编制工作已正式启动,日前已在工信部信息化和软件服务业司组织下,召开了规划编制第一次工作会议,成立了规划编制小组,讨论了规划编制工作方案、规划草案、任务分工、近期工作安排等。
大数据产业的未来,越来越值得人们期待。但如何从大数据上获取价值,却是一个很让人头疼的问题。
就在前几天,笔者读到一段很“不合潮流”的话。在一次演讲中,华为轮值CEO徐直军表示:“华为不是一个数据公司,不经营数据,永远不从数据上获取价值。而是与更多和合作伙伴一起来保护我们客户的数据,使客户数据更安全,解决客户面向未来的问题,使客户真正实现信息化!”
对于他的说法,我是持怀疑态度的,甚至感到他说的很不严谨。如果从文字上细细琢磨的话,对客户数据的保护其实也是一种对大数据的利用,保护大数据带来的价值,也是大数据的变现。大数据时代的安全防护,难道不也是一种产业分支吗?在别人利用客户大数据发广告的时候,你保护了这些大数据,除非你是免费的,否则怎么会没有价值产生?即便是360的免费杀毒,也在别的地方产生价值了。华为的大数据,又怎么能独善其身?
很显然,没有人可以游离于大数据的价值之外。不再搞一些文字方面的纠缠了,其实我举徐直军这段话的目的,无非是想说明这一点:“大数据,不经意间就会产生价值。”于是,再回到一开始那个问题:“大数据公司该如何从大数据上获取价值?”
对于这个问题,一直以来我个人的观点是这样的:“第一,大数据必须要利用,否则就是浪费,同时弃之不用也对我们的发展不利。第二,大数据的利用要遵循三个原则,一是不能以影响用户体验为代价,二是不要采取非法手段去牟利,三是应该确保大数据的利用是在绝对安全的前提之下,或者最大限度的安全之下。第三,大数据要有公众监督,不能暗箱操作,要有透明性。”
我之所以持有这样的观点,是因为这几个问题是目前外界对大数据比较关注但也很容易被忽视的问题。目前,人们纠结于利用或不利用大数据,却忽略了怎么用,怎么好好的用,怎么用好。虽然目前大数据还没有做到真正的商业化,但之前一些关于大数据的“警报”却必须引起我们的重视,比如社保信息泄露,比如某些电商的信息泄露等等。
对于我的问题,以及这几个观点,笔者向大数据解决方案提供商成都数之联科技CEO周涛请教。周涛是这样回答我的。
关于大数据本身,他认为,“大数据”是“数据化”趋势下的必然产物。数据化最核心的理念是:“一切都被记录,一切都被数字化”。
对于这个观点,我是赞同的,因为这就是大数据的本质。“天空没有留下翅膀的痕迹,但我已经飞过”,这只是诗歌,不是现实。
对于如何从大数据上获取价值,周涛认为:“对此,我们要做得是1,解决‘信息过载’的问题,即通过自动化、规模化的方式为每一个用户找到他感兴趣或者需要的信息;2、从非结构化的数据中挖掘出价值,甚至在尽可能少损失有价值信息的前提下将其结构化; 3、在数据隐私和安全得以保障的前提下,从关联的数据中挖掘出‘一加一远大于二’的价值。”
周涛的观点,应该是从企业角度来说的。按我理解,应该是这样三个应用步骤:“一,如何提取大数据;二,如何优化大数据;三,如何合理利用大数据。”说的虽然简单,但很清晰。尤其是“一加一远大于二”的说法,很有启发性。
不过,对此我还有几点疑问:“第一,提取大数据的方法有了,但大数据的主人是否愿意让企业提取呢?比如,我购买商品,留下了我的信息、地址甚至电话,这些我是不愿意让别人提取的。第二,大数据优化的过程中,有价值的信息留下了,但那些在商家眼里无价值的信息怎么处理?一旦所谓无价值的信息被遗弃,最终落入别有用心的人手里,那会怎么样呢?”同时,我还有一个宽泛一点的问题,大数据的安全该如何保证呢?
真正的物联网时代还没有到来,但已经近在咫尺,大数据公司该如何从大数据上获取价值,这是个必须要思考的问题。对于我的问题和忧虑,我很希望周涛或者是其他的行业人士能给我一个解答。

⑤ 常见的流量变现的方法有哪些

1、弹窗广告变现:适合垃圾流量网站,这是最低级的流量变现方式,没有任何技术和数据分析,适合垃圾网站使用,一般来说,这种网站的流量价值本身就很低,流量来源没有确定目标,假如你网站有流量,但实在是找不到变现的方法,可以采取这种方式。

2、广告联盟变现:适合内容文章网站,对用户体验的影响不是很大,最好的当然是谷歌联盟,广告匹配很好,其次是网络联盟,这种流量变现方式就具有一定的定向性,与网站本身内容契合,文章内容与广告互补。

3、定向销售变现:适合购物产品网站,来购物或者产品类网站的流量,本身就具有一定的目的性,他在了解某个产品,说明他对这件产品有兴趣,近期或者不久将来有购买的欲望,这种流量价值较高,流量目的性很强,一般都会产生消费,是高阶流量的典型代表。

⑥ 什么数据可以成为数据资产数据资产化如何实现

何为资产?

我们来看一下资产的概念: “资产是指由企业过去的交易或事项形成的、由企业拥有或者控制的、预期会给企业带来经济利益的资源。”

在资产的释义中,我们可以看出“拥有或者控制”和“带来经济利益”是资产最核心的内涵。由资产的概念引申到数据资产,我们可以得到,数据资产是由企业拥有或控制,能够为企业带来经济利益的数据资源。

石油在未得到利用之前,只是一种黑色的液体。数据得不到利用也只是一堆毫无价值的信息,那么什么样的数据资源可以转换为数据资产呢?

可“变现”的数据资源

可明确作为“资产”的数据资源,表现为以下两种形式:可帮助现有产品实现收益的增长;数据本身可产生价值。

数据为业务赋能

数据助力现金流,即数据本身不产生价值,但通过数据作用于现有产品 ,使其在创造收益、降低成本上有更好的表现。企业通过这种数据“内消”的方式,将生产经营中产生的数据进行收集、整理、分析,用于服务自身经营决策、业务流程,从而提高产品收益。

数据本身产生价值

通过利用数据优化业务的方式,是数据间接产生收益的方式,这种情况下,数据能够产生的价值是难以评估的。在合法合规的前提下,让数据以各种形式进行交易,这是数据产生价值的直接方式。

数据“变现”的过程就是数据资产化

能够直接产生价值的数据,数据变现的过程就是数据交易的过程,此过程的成本在于数据收集、处理、存储的成本,属于比较容易的数据变现;而利用数据为业务赋能拥有更复杂、专业的资产化流程。我们通过一个案例来解析数据资产化的过程:

某金融机构在投融资交易的过程中,一直苦恼于没有固定的标准来界定企业的可投资性,难以找到符合其投资标准的融资企业和项目,导致出现“有钱找不到投资项目,有投资项目的企业融不到钱”的现象。这时候此机构急需解决信息不完整、不对称、不透明、缺乏客观分析与评价的问题,所以找到探码,希望通过大数据来解决这个事情。

我们了解了该机构的诉求后,得出了数据资产化解决方案:通过机器学习、人工智能等方式对企业大数据进行分析,以得到解决办法。具体步骤为:

随着数据资源越来越丰富,数据资产化将成为企业提高核心竞争力、抢占市场先机的关键。我们也将以扎实的技术,打破数据之间信息孤岛状态,应用云计算、大数据和人工智能技术帮助企业实现数据资产化运营。

⑦ 数据如何变现

可以的!但是你必须是一位黑客!

⑧ 如何让大数据为自己赚钱

首先要确定自己有的“大数据”是什么数据,大到怎样的量级,其中包含的数据元素有多少;
其次找到自己拥有的数据本身的商业属性,找到需要这些数据的用户,并确定他们对这些数据需要是否刚性,以及调研可以为使用这些数据的用户带来哪些价值或者改善;
最后就是设计一套运营模式,让这些数据变现。包括可以一次性的出售,这基本上不会有太多价值;更好的方式是数据动态更新,提供各种数据之间关联分析和目标组合,分别按照不同用户需要持续提供,也就可以长期的赚钱了。
市场上多数大数据本身并非真正的大数据,只是一部分数据资料而已!

⑨ 运营商大数据对外价值变现的十大趋势

作者 | 傅一平

来源 | 与数据同行

最近中国移动提出了DICT战略,显示其在政企市场进一步拓展的雄心,在这个背景下,重新探讨下运营商的大数据变现很有意义。虽然近半年“大数据圈”似乎有点风声鹤唳,但对于合法合规的进行大数据业务的企业来讲没有什么影响。

下面笔者就结合自身实践,给出未来2-3年运营商大数据价值变现的十个趋势判断,仅代表个人看法,希望于你有所启示。

1、行业服务边界不断拓展

依托于运营商潜力巨大的数据资源和政企市场渠道资源,经过多年的市场培育和拓展,当前运营商大数据业务从原来的金融、旅游等行业逐步拓展到政府、旅游、交通、教育、商业、招聘、医疗等各个各业。

运营商ICT业务在推进中,也孕育了不少大数据业务的商机,大数据业务则反过来促进了ICT业务的发展,因为大数据除了业务价值,还有一定的社会品牌效应,两者通过融合可以形成合力。

随着企业数字化转型的加快及产业互联网的崛起,作为未来社会基础设施的大数据,将与云计算、人工智能、物联网、区块链一起,在行业领域开疆扩土,其应用的边界几乎是无限的。

2、进入行业应用的深水区

大数据在行业领域拥有着巨大的潜力并不意味着运营商就能分得多少杯羹。虽然运营商大数据业务当前在金融、旅游等行业已经有所斩获,但这些行业低垂的果实基本要被摘光了。

以金融为例,4-5年前运营商切入的验真,失联触达等业务,当前仍然是运营商大数据变现的主力,但金融行业并未如运营商原先预料的那样,在贷前、贷中、贷后中给予运营商更多的机会,运营商很多变现业务模式的拓展基本是停滞的,起码不够快。

在大量的其他行业领域,运营商往往只能做到蜻蜓点水,而无法聚沙成塔,比如业务的复购率很低。

从定性的角度讲,运营商对于行业的理解还是比较浅的,其大量的行业应用游走在企业的核心生产流程之外,大数据似乎是奢侈品,而不是必需品,因此粘性是不够的。

以金融验真这个业务为例,其附加值并不高,且容易被替代,想想这几年对于金融行业的理解又增加了多少呢?这些都是需要反思的地方。

笔者曾经在智慧交通相关文章中提到:运营商的数据在很多领域其实是很有前途的,但必须深耕,要理解这个行业的业务,通晓这个行业的算法,不停的打磨产品,从而逼近核心。

可以这么说,运营商大数据将很快进入行业应用的深水区,为了顺应这个趋势,运营商需要建立专业化的组织去攻坚克难,挑战很大。

3、与互联网公司的竞争加剧

互联网应该没有把运营商当成主要的大数据竞争对手,但运营商进入这个领域会跟互联网公司形成事实上的竞争,无论是新零售,智慧交通等等,进入者都会感受到互联网巨头的压力。

比如运营商要为大型商超提供数据服务,但互联网公司早就捷足先登,新零售是互联网出的概念,当运营商还在进行自身渠道的艰难转型时,互联网公司线下商业的版图已经规划好了,当然也包括了大数据业务。你到商超谈,人家一开口就提XX通怎么样怎么样。

当然还不仅仅是这些。

无论是互联网公司在To G上自顶向下的推广策略,还有诸如城市大脑单一采购来源的霸气,都在说明巨型互联网公司在这些领域的影响力。

运营商要获得机会,得动用一切可用的资源,发挥自己数据的差异化价值,由点及面去寻找机会。实践证明,管道数据的价值是巨大的,但巨型互联网公司的数据也越来越好,这是不得不面对的现实。

4、从要素驱动向要素+能力驱动转型

运营商当前在大数据变现上的突破只能说摘取了低垂的果实,但这种通过简单数据加工形成的数据产品竞争力是不够的,也是不可持续的。

比如做智慧交通,如果位置精度和覆盖度不够,连速度都测不准,根本做不出高质量的数据产品。

应该来讲,运营商从来就没有现成的、高精度的、可以到用户级别的位置数据,粗精度的原始位置数据未来可能连支撑运营商自己的业务转型都不够,运营商需要充分挖掘现有位置数据的潜力,通过建模等方式把较为精准的位置模型做出来,才能有基本的大数据变现底蕴。

位置精度的提升虽然是一小步,但却是对外大数据变现的一大步。位置准了,运营商对于人们整个线下生活的理解就准了,无论是客流,路网,OD等等都不再话下。

现在运营商依靠数据资源这个要素能走出第一步是不错的,但光靠资源驱动已经不够了,能力必须过来接棒,没有能力加持的运营商大数据变现前景暗淡。

因此,运营商大数据变现未来不再是躺着挣钱,而是要从原始数据的驱动向数据+能力双驱动转型,这个能力包括人才、技术、数据、产品、运营等等,这是不容置疑的。但如果只是空喊着口号不敢探索尝试,则也许连能力提升的机会都没有。

5、持续强化大数据合作的生态

大数据变现从底向上涉及平台、数据、建模、产品、方案、渠道、咨询、运营、安全等一系列的内容,运营商无法一手包办,因此必须建立合作的生态。

从业务的角度看,缺乏渠道合作伙伴、缺乏行业解决方案对于运营商都是很现实的挑战,最大的痛苦莫过于不知道商机在哪里,不知道自己想做的这个数据或产品有没有前途。运营商不可能瞬间将现有的客户经理队伍转为数字化产品的销售队伍,毕竟知识结构的要求不一样。

虽然可以采取MVP的方式推进,但一方面试错的成本摆在那里,运营商也并没有资本为其背书,另一方面时间成本也大了点。现在很多运营商都有合作伙伴招募计划,这是很好的尝试,但符合要求的合作伙伴还是太少了。

从开放的角度看,中国移动的梦网曾经创造过辉煌,但开放这句口号不是随便喊喊的,你得建立一套标准,清晰的告诉别人你有什么能力,然后如何能方便的接入。

比如当我们在互联网大会展示城市实验室产品的时候,发现仍然有那么多的人惊讶于运营商竟然还能做这个,就说明我们在开放这条道上还有很长的路要走。

而当笔者第一次访问阿里云网站的时候,其较好的使用体验给我留下了深刻的印象,随后定期的营销推送起码说明是用心的,又比如笔者第一次使用腾讯云域名申请时,其后腾讯云客服的电话调研也是很及时的。

因此,能否跟更广泛的合作伙伴建立连接,能否建立起开放的平台,能否确保信息的安全,在很大程度上决定了运营商大数据变现的蛋糕能做多大。

6、通过集中化获得溢价能力的趋势将加强

由于历史原因运营商的大数据实际是分省存储和运营的,这跟互联网公司天然的集中统一的数据基因是完全不同的。虽然一些运营商在集中化上做了很多努力,但相对互联网公司,还是有一些差距。

各省本地化做一些产品虽然带来了灵活性,但造成了事实上的重复开发,这种模式在创新阶段其实没什么问题,但最大的问题是各个省能否有足够的资源去保证产品的持续优化,无论从数据的角度,还是从运营的角度看,我们都需要一定的集约化机制来确保高效低成本的运作。

但这还仅仅是一个方面。

另一方面,相较互联网,由于数据的割裂,运营商基于单个省的数据做出的产品溢价能力不高,往往只能服务于特定区域,在很多竞争中会处于劣势,比如当前运营商基于位置数据的应用很多,但为什么上网数据的变现却很少呢?

这个不仅仅是简单的https问题,更是因为客户对于上网数据的诉求基本是全国的,没有地域的概念,这让运营商失去了很多突破的机会。

因此,运营商的大数据在一个省创新后迅速全网复制是一直要坚持的策略,而基于集中化的数据进行创新是提升产品竞争力的一个关键。

7、运营商DICT战略将使得大数据获得更大支持

随着数字经济的发展和行业数字化的进步,传统产业转型升级的需求强劲,运营商和云服务提供商,均在强化云、网、端、边协同,推出“云+网+DICT”智能化解决方案,帮助企业实现更深层次的数字化转型。

运营商的政企2B市场是当前关注的焦点,而云+DICT(DT+CT+ICT+IDC)又是其中的关键,这意味着未来各种资源会逐步会向DICT倾斜,大数据需要抓住这个机会,通过DICT的融合来促进大数据业务的规模化发展,所谓“借势”。

另外,当前三大运营商已经宣布了5G商用,中国移动也发布了了“5G+”计划,其中包括“5G+AICDE”计划,“5G+AICDE”是将5G作为接入方式,与人工智能(AI)、物联网(IoT)、云计算(Cloud Computing)、大数据(Big Data)、边缘计算(Edge Computing)等新兴信息技术深度融合,准备打造以5G为中心的泛智能基础设施。

5G时代人和物、物和物之间的连接产生的数据类型将会更多,5G更密集的基站布点意味着更高的定位精度,5G业务形式更加多样意味着管道中的数据内容会爆发性增加,运营商对于客户行为的刻画能力将进一步加强,每项垂直5G行业应用都将会与大数据有着千丝万缕的关系,这些对于运营大数据的发展是利好。

8、日益趋紧的数据安全要求对于运营商既是挑战也是机遇

运营商虽然拥有海量的数据,但很多省公司并未实质性的开展大数据业务,很多是基于安全的考量。即使是正在开展大数据变现业务的运营商省份,合规合法经营也是其开展大数据业务的底线,运营商对于大数据的业务创新是相对保守的。

事实上,运营商当前能开展的各项大数据新业务,都需要经过内部极其严格的法律、安全多道审核,加上行业、集团、省出台的各种安全管理规范的约束,还有定期的安全检查,都让运营商大数据业务从一出生就经历着内部一轮轮的安全洗礼。

2019年持续发酵的各种信息安全事件让大数据圈似乎如履薄冰,但其打击的还是各种违法经营和黑市交易。事实上,经过新一轮的洗盘,运营商也许会面临较以往更好的商业环境,数据可能会变得更为稀缺,毕竟以前黑市的数据交易会导致良币驱逐劣币的现象,当然这也只是一种猜测。

可以肯定的是,未来国家对于信息安全管控的趋紧会使得大数据业务的创新变得更具挑战性,但合规合法的进行大数据价值挖掘,助力中国经济高质量发展始终是主流,运营商虽然会面临安全上的挑战,但也有更多的机会。

9、运营商大数据对于TO C业务的探索不会停止

互联网公司TO C业务前期是靠钱烧出来的,毕竟消费者是趋利的,拥有高体验的产品和一定基础的用户后,互联网公司才有了珍贵的海量数据,这个时候大数据才有用武之地,反过来赋能业务发展,这是互联网公司应用大数据的本质。

运营商天然就有大数据,但大数据变现的实践还是告诉我们,运营商的数据维度还是不够丰富,比如缺乏消费数据,而巨型的互联网公司通过应用的丰富不断积累着更多维度的数据。

事实上,当前运营商的数据维度拓展基本是停滞不前的,如果不加以改善,在不久的将来,运营商的数据优势会逐步变小,最终会影响到产品的竞争力。

现在运营商建立了很多专业公司,比如中国移动的咪咕,有人会质疑这些公司能否赚钱,姑且不从战略的角度思考这个问题,即使站在大数据的角度看,这些公司的拓展能够让运营商拥有更丰富的数据,这就很有价值。最近中移金科成立了,支付数据对于DT有多重要不用解释吧,因此意义是很深远的。

其实做大数据产品的,哪个没有点TO C的梦想?希望运营商能基于自己的资源优势,结合大数据的差异化特点,能够打造出真正的既卖座又叫好的TO C产品。

10、运营商对于低价值密度的大数据处理能力要求会大幅提升

运营商的DPI数据具有典型的大数据特征,有潜力但价值密度低,但这个数据是运营商除位置数据以外最珍贵的数据,很多人说这个数据在运营商变现中实际没啥应用场景,或者言必称https,那是比较业余的说法。

随着5G时代的到来,对于DPI数据的有效开采挖掘对于运营商大数据变现是核心的基础工作之一。

首先,DPI这个技术原生是为网络优化服务的,比如很多字段对于数据变现没有价值,能否考虑更高性价比的处理手段?这个就需要运营商针对性的进行研究,比如从客户洞察、精准营销和价值变现的角度去高效低成本的采集管道中的数据。

其次,5G海量、低延时、非结构数据的特点,将进一步促进数据存储、处理和分析技术的进步,即使是当前的4G,从采集到应用的时延也是比较高的,很难达到场景式营销的要求,而且保留的周期也非常有限。

最后,5G大数据的价值密度将进一 步降低,对AI的能力要求将更高,即使是针对当前的4G数据,运营商的NLP等能力储备也是不够的,因此要尽快补足短板。

当然,以上十个趋势只是笔者的个人判断,受限于自己的能力和视野,以上谈的肯定有很多不到位的地方,权当笔者抛砖引玉,如果能引发一点思考,那就更好了。

⑩ 怎样才能做到把数据增值变现

对于传统企业来说,要实现数据资产变现,核心应该是跨界合作。企业与企业之间通过数据的战略合作,打通彼此的数据关系,进行数据合作、交叉营销、资源互换、整合推广,用数据共享来驱动彼此的主营业务,这样将会实现远高于数据租售带来的直接经济价值。

阅读全文

与数据如何变现相关的资料

热点内容
影像技术如何缩短考证 浏览:29
河北交通职业技术学院教学质量怎么样 浏览:74
长沙艾灸技术多少钱 浏览:351
短视频技术怎么学 浏览:882
软件数据源在哪里 浏览:737
根据产品定位卖家需达到什么效果 浏览:417
iq代理权限有哪些 浏览:51
淘宝交易明细有哪些 浏览:202
通辽市哪个牛市场大 浏览:692
现金交易如何进公账 浏览:266
专用技术设备有哪些 浏览:249
选择代理记账有什么好处 浏览:174
鸿蒙系统通知栏信息怎么查看 浏览:146
外企股票怎么交易 浏览:48
离婚程序具体怎么走 浏览:9
如何实现档案信息数字化 浏览:358
疫苗建档如何更改信息 浏览:806
代币交易中你学会了什么 浏览:419
催乳师技术班哪里靠谱 浏览:623
测量后如何出数据 浏览:965