导航:首页 > 数据处理 > 学大数据需要什么基础

学大数据需要什么基础

发布时间:2022-04-27 17:01:11

‘壹’ 零基础自学大数据要学哪些内容

1. EXCEL、PPT(必须精通)


数据工作者的基本姿态,话说本人技术并不是很好,但是起码会操作;要会大胆秀自己,和业务部门交流需求,展示分析结果。技术上回VBA和数据透视就到顶了。


2. 数据库类(必须学)


初级只要会RDBMS就行了,看公司用哪个,用哪个学哪个。没进公司就学MySQL吧。


NoSQL可以在之后和统计学啥的一起学。基本的NoSQL血MongoDB和Redis(缓存,严格意义上不算数据库),然后(选学)可以了解各类NoSQL,基于图的数据库Neo4j,基于Column的数据库BigTable,基于key-value的数据库redis/cassendra,基于collection的数据库MongoDB。


3. 统计学(必须学)


如果要学统计学,重要概念是会描述性统计、假设检验、贝叶斯、极大似然法、回归(特别是广义线性回归)、主成分分析。这些个用的比较多。也有学时间序列、bootstrap、非参之类的,这个看自己的意愿。


其他数学知识:线性代数常用(是很多后面的基础),微积分不常用,动力系统、傅里叶分析看自己想进的行业了。


4. 机器学习(数据分析师要求会选、用、调)


常用的是几个线性分类器、聚类、回归、随机森林、贝叶斯;不常用的也稍微了解一下;深度学习视情况学习。


5. 大数据(选学,有公司要求的话会用即可,不要求会搭环境)


hadoop基础,包括hdfs、map-rece、hive之类;后面接触spark和storm再说了。


6. 工具类


语言:非大数据类R、Python最多;大数据可能还会用到scala和java。


其他框架、类库(选学):爬虫(requests、beautifulsoup、scrapy),日志分析(常见elk)。

‘贰’ 大数据应该怎么学有哪些要求

大数据课程知识点较多,学起来有一定难度!

“大数据”就是一些把我们需要观察的对象数据化,然后把数据输入计算机,让计算机对这些大量的数据进行分析之后,给出我们一些结论。

大数据学习内容主要有:

①JavaSE核心技术;

②Hadoop平台核心技术、Hive开发、HBase开发;

③Spark相关技术、Scala基本编程;

④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;

⑤大数据项目开发实战,大数据系统管理优化等。

你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。

北大青鸟中博软件学院大数据毕业答辩

‘叁’ 学大数据需要什么条件

作者:加米谷大数据老师
链接:https://www.hu.com/question/63581136/answer/1142926675
来源:知乎
着作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

目前大多数的招聘企业,对于大数据人才要求必须是大专学历以上,而且大专学历还要求是理工科相关专业的,如果是本科及本科以上的,则对专业要求适当的放宽。大数据学习没有你想象的那么困难,零基础也是可以学习的。同时大数据分为两大方向:大数据开发和数据分析。
这两大方向的对于基础知识的要求不同,数据分析偏向应用层面,对于编程要求不高,相较而言对于基础知识这块要求低一点。
下面我们结合大数据开发和数据分析的课程内容来具体说明大数据学习要具备什么基础知识。
下面是大数据开发的课程内容:
阶段一:静态网页基础(主要学习HTML和CSS)
阶段二:JavaSE+javaWEB
阶段三:JAVA高阶应用
阶段四:javaEE
阶段五:Linux和Hadoop
阶段六:大数据数据库
阶段七:实时数据采集
阶段八:Spark数据分析
从上面的课程内容看,大数据开发学习要掌握java、linux、hadoop、storm、flume、hive、Hbase、spark等基础知识。
数据分析的课程内容:
阶段一:Mysql
阶段二:Python开发基础
阶段三:Python高阶编程
阶段四:数据分析基础知识
阶段五:数据挖掘
阶段六:机器学习
阶段七:业务分析
阶段八:项目实战(挖掘和业务分析)
阶段九:大数据分析
数据分析课程跟大数据开发不同,需要掌握的基础知识也不同,数据分析需要掌握的基础有:数据库、python、spss、MongDB、smartbi、tableau、r语言以及数据建模等知识。
以上就是大数据要掌握的基础知识,只有掌握了这些知识,才能够找到一份好的大数据工作。大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛,大数据技术已经像空气一样渗透在生活的方方面面。大数据技术的出现将社会带入了一个高速发展的时代,这不仅是信息技术的终极目标,也是人类社会发展管理智能化的核心技术驱动力。

‘肆’ 大数据初学者应该怎么学

大数据大家一定都不陌生,现在这个词几乎是红遍了大江南北,不管是男女老幼几乎都听说过大数据。大数据作为一个火爆的行业,很多人都想从事这方面相关的工作,所以大家就开始加入了学习大数据的行列。

目前,市面上不仅是学习大数据的人数在增加,随之而来的是大数据培训机构数量的迅速上升。因为很多人认为这是一门难学的技术,只有经过培训才能够很好的学习到相关技术,最终完成就业的目的。其实,也并不都是这样的,学习大数据的方法有很多,只有找到适合自己的就能够达到目的。

那么,大数据初学者应该怎么学?

1、如果是零基础的初学者,对于大数据不是很了解,也没有任何基础的话,学习能力弱,自律性差的建议选择大数据培训学习更有效;

2、有一定的基础的学员,虽然对于大数据不是很了解,但有其它方面的编程开发经验,可以尝试去选择自学的方式去学习,如果后期感觉需要大数据培训的话再去报名学习;

3、就是要去了解大数据行业的相关工作都需要掌握哪些内容,然后根据了解的内容去选择需要学习的大数据课程。

大数据学习路线图:

‘伍’ 学大数据需要什么基础

说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。

‘陆’ 大数据学习有什么要求

从通常的情况下来讲,要求大数据学习最好是理工科基础,数学比较好,然后逻辑思维比较强。但是这些都是从比较官方的角度来进行阐述的,最重要的是你需要对它有浓厚的兴趣有强烈的好奇心。

从现在企业的要求来看,至少要专科以上的学历,并且熟悉JAVA、Hadoop、HBase、Flink等等编程语言以及系统。大数据开发学习有一定难度,零基础入门首先要学习Java语言打基础,一般而言,Java学习SE、EE,需要一段时间;然后进入大数据技术体系的学习,主要学习Hadoop、Spark、Storm等。除此之外,学习大数据开发需要学习的内容包括三大部分,分别是:大数据基础知识、大数据平台知识、大数据场景应用,大数据基础知识有三个主要部分:数学、统计学和计算机;大数据平台知识:是大数据开发的基础,往往以搭建Hadoop、Spark平台为主。

‘柒’ 学习大数据需要什么基础

学习大数据需要的基础:

学习大数据开发技术相关的开发技术知识体系是比较庞大的,对于大数据的学习来说学,确实逻辑思维能力是更重要的。基础知识是可以通过学习进行弥补的,大数据培训则成为小伙伴比较靠谱的学习方式。在大数据培训班第一阶段就是基础内容的学习。

不同的大数据培训机构在课程内容上侧重点可能会有所不同,所以在培训周期上也会有所差异。硅谷大数据培训班,学习课程内容除了第一阶段学习Java语言基础之外,还要学习HTML、CSS、Java、JavaWeb和数据库、Linux基础、Hadoop生态体系、Spark生态体系等课程内容。

项目实战对学习大数据的同学来说是一个必须经过的过程。学习大数据的同学只有经过项目实战训练,才能在面试和后期工作中从容应对,这是一个很重要的过程。

当然了,项目实战训练时间与项目的难度、项目的数量相关,项目难度较大、项目较多,当然学习的时间会更长。

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

‘捌’ 想要学习大数据,应该怎么入门

记住学到这里可以作为你学大数据的一个节点。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

‘玖’ 大数据需要学习哪些内容

当前大数据的知识体系还是比较庞大的,随着大数据技术生态的逐渐成熟和完善,大数据领域也逐渐形成了更多的岗位细分,从事不同的岗位细分方向则需要学习不同的知识。比如大数据开发需要:

JavaSE基础核心

Java入门语法、面向对象核心、集合与泛型、线程机制、网络编程、流程控制结构、异常体系、反射体系、IO流、设计模式

大数据基础核心

Maven、Hadoop、Hive、Kafka、Linux、Shell、Zookeeper+HA、Flume、HBase

Spark生态体系框架

Scala语言、Spark SQL、Kylin、Druid、Sqoop、Spark Core、Presto、Spark Streaming、Redis缓存数据库、GIT & GIT Hub、ElasticSearch

‘拾’ 大数据好学吗,大数据需要学习什么技术

大数据目前发展是比较好的,特别是在鸿蒙发布后物联网时代的到来下,大数据相关岗位将会更多。想要转行的话,大数据的确是个很好的方向。既然想要转行大数据,那么肯定要具备大数据的相关知识与技能。

这里介绍一下大数据要学习和掌握的知识与技能:

①java:一门面向对象的计算机编程语言,具有功能强大和简单易用两个特征。

②spark:专为大规模数据处理而设计的快速通用的计算引擎。

③SSM:常作为数据源较简单的web项目的框架。

④Hadoop:分布式计算和存储的框架,需要有java语言基础。

⑤spring cloud:一系列框架的有序集合,他巧妙地简化了分布式系统基础设施的开发。

⑤python:一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。

大数据可以从事的职业:

①大数据维护、研发、架构工程师方向

所涉及的专业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;

②大数据挖掘、分析方向

所涉及的专业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

阅读全文

与学大数据需要什么基础相关的资料

热点内容
哪里可查老板的信息 浏览:372
市场降温后市怎么样 浏览:708
网银转存交易多久到账户 浏览:3
住友机台做产品发白怎么调 浏览:355
龙虾养殖需要用什么兽药产品 浏览:916
怎么判断自己的账号适合什么产品 浏览:347
过会信息哪里查 浏览:341
南华期货怎么模拟交易 浏览:786
dnf如何交易角色 浏览:397
昭通哪里卖小活牛市场 浏览:1
原油如何委托交易 浏览:958
中天小程序在哪里 浏览:916
试用小红书小程序哪个好 浏览:132
福州菜市场杀鸭子多少钱 浏览:295
怎么对程序进行注释 浏览:332
日本海产品有什么商机 浏览:450
银产品过敏怎么办 浏览:245
商店酒水如何代理 浏览:628
如何使产品快速流通 浏览:745
抖音怎么晒数据的 浏览:52