⑴ 什么是数据清洗
数据清洗,就是把一些杂乱无章的,和不可用的数据清理掉,留下正常的可用数据。
⑵ 数据清洗的基本概念
数据清洗(Data cleaning)– 对数据进行重新审查和校验的过程,目的在于删除重复信息、纠正存在的错误,并提供数据一致性。
数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。我们要按照一定的规则把“脏数据”“洗掉”,这就是数据清洗。而数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。数据清洗是与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
⑶ 结构化数据和非结构化数据分别是什么数据清洗是什么
(1)结构化数据,简单来说就是数据库。结合到典型场景中更容易理解,比如企业ERP、财务系统;医疗HIS数据库;教育一卡通;政府行政审批;其他核心数据库等。这些应用需要哪些存储方案呢?基本包括高速存储应用需求、数据备份需求、数据共享需求以及数据容灾需求。
(2)非结构化数据库是指其字段长度可变,并且每个字段的记录又可以由可重复或不可重复的子字段构成的数据库,用它不仅可以处理结构化数据(如数字、符号等信息)而且更适合处理非结构化数据(全文文本、图象、声音、影视、超媒体等信息)。
(3)数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
⑷ 标题 为什么要进行数据清洗如果不进行数据清洗会有什么影响
为了保证数据的准确性和完整性,如果没有数据清洗那么结果会产生误差。
数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
数据清洗方法
一般来说,数据清理是将数据库精简以除去重复记录,并使剩余部分转换成标准可接收格式的过程。
数据清理标准模型是将数据输入到数据清理处理器,通过一系列步骤“ 清理”数据,然后以期望的格式输出清理过的数据。数据清理从数据的准确性、完整性、一致性、惟一性、适时性、有效性几个方面来处理数据的丢失值、越界值、不一致代码、重复数据等问题。
数据清理一般针对具体应用,因而难以归纳统一的方法和步骤,但是根据数据不同可以给出相应的数据清理方法。
⑸ 数据清洗的内容有哪些
数据清洗的内容包括:选择子集、列名重命名、缺失值处理、数据类型转换、异常值处理以及数据排序。
1、选择子集
在数据分析的过程中,有可能数据量会非常大,但并不是每一列都有分析的价值,这时候就要从这些数据中选择有用的子集进行分析,这样才能提高分析的价值和效率。
2、列名重命名
在数据分析的过程中,有些列名和数据容易混淆或者让人产生歧义。
3、缺失值处理
获取的数据中很可能存在这缺失值,这会对分析的结果造成影响。
4、数据类型的转换
在导入数据的时候为了防止导入不进来,python会强制转换为object类型,然是这样的数据类型在分析的过程中不利于运算和分析。
数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。
数据清洗方法:一般来说,数据清理是将数据库精简以除去重复记录,并使剩余部分转换成标准可接收格式的过程。数据清理标准模型是将数据输入到数据清理处理器,通过一系列步骤“ 清理”数据,然后以期望的格式输出清理过的数据。数据清理从数据的准确性、完整性、一致性、惟一性、适时性、有效性几个方面来处理数据的丢失值、越界值、不一致代码、重复数据等问题。
⑹ 数据清洗技术有哪些
数据清洗是指在数据集中发现不准确、不完整或不合理数据,并对这些数据进行修补或移除以提高数据质量的过程。而通常来说,数据清洗框架由5个步骤构成,第一就是定义错误类型,第二就是搜索并标识错误实例,第三就是改正错误,第四就是文档记录错误实例和错误类型,第五就是修改数据录入程序以减少未来的错误。
清洗数据有三个方法,分别是分箱法、聚类法、回归法。这三种方法各有各的优势,能够对噪音全方位的清理。分箱法是一个经常使用到方法,所谓的分箱法,就是将需要处理的数据根据一定的规则放进箱子里,然后进行测试每一个箱子里的数据,并根据数据中的各个箱子的实际情况进行采取方法处理数据。
怎么分箱,我们可以按照记录的行数进行分箱,使得每箱有一个相同的记录数。或者我们把每个箱的区间范围设置一个常数,这样我们就能够根据区间的范围进行分箱。其实我们也可以自定义区间进行分箱。这三种方式都是可以的。分好箱号,我们可以求每一个箱的平均值,中位数、或者使用极值来绘制折线图,一般来说,折线图的宽度越大,光滑程度也就越明显。
⑺ 数据清洗与筛选是什么意思
数据清洗顾名思义就是能清洗出号码中的不可用号码,和以往传统的号码匹配不同,最新型的清洗方式是系统拨测清洗,精准度不仅高速度还特别快。企业仅仅需要做的就是把号码导入系统,完成检测以后新的号码会自动被导出、分类。这样不仅能够使企业的号码库保持最新,更能使企业未来的发展道路顺畅。
数据清洗的原理
我们是运用运营商的接口进行查询,速度是8MS/一条,预计10万条在5分钟左右;
目前空号检测分为两种模式一种是web营销筛选,另一种是api账号二次清洗。目前由于运营商提出的手机号状态码价格之高,为了合理的减少合作伙伴的运营成本,故营销筛选的是利用库存数据进行筛选。命中率在90%左右,如果客户有高需求高精准的需求,建议使用API账号二次清洗,账号二次清洗命中率保证是100%,但价格相应的会高出很多。
数据筛选就是在大数据环境下数据量快速的积累,要想分析出海量数据所蕴含的价值,筛选出有价值的数据十分重要。而数据筛选在整个数据处理流程中处于至关重要的地位。数据筛选的目的是为了提高之前收集存储的相关数据的可用性,更利于后期数据分析。
数据筛选包括数据抽取、数据清理、数据加载三个部分。
数据筛选的目的是为了提高之前收集存储的相关数据的可用性,更利于后期数据分析。数据的价值在于其所能够反映的信息。然而在收集数据的时候,并没有能够完全考虑到未来的用途,在收集时只是尽可能的收集数据。其次就是为了更深层次的获得数据所包含的信息,可能需要将不同的数据源汇总在一起,从中提取所需要的数据,然而这就需要解决可能出现的不同数据源中数据结构相异、相同数据不同名称或者不同表示等问题。
⑻ 数据清洗经验分享:什么是数据清洗 如何做好
如何去整理分析数据,其中一个很重要的工作就是数据清洗。数据清洗是指对“脏”数据进行对应方式的处理,脏在这里意味着数据的质量不够好,会掩盖数据的价值,更会对其后的数据分析带来不同程度的影响。有调查称,一个相关项目的进展,80%的时间都可能会花费在这个工作上面。因为清洗必然意味着要对数据有一定的理解,而这个工作是自动化或者说计算机所解决不了的难题,只能靠人脑对数据进行重新审查和校验,找到问题所在,并通过一些方法去对对应的数据源进行重新整理。
清洗数据的方式大概可以分为以下几类,筛选、清除、补充、纠正,例如:
去除不需要的字段:简单,直接删除即可。但要记得备份。
填充缺失内容:以业务知识或经验推测填充缺失值;以同一指标的计算结果(均值、中位数、众数等)填充缺失值;以不同指标的计算结果填充缺失值。
格式不一致:时间、日期、数值、全半角等显示格式不一致,这种问题通常与输入端有关,在整合多来源数据时也有可能遇到,将其处理成一致的某种格式即可。例如一列当中储存的是时间戳,某些跨国公司的不同部门在时间的格式上有可能存在差别,比如2019-01-12,2019/01/12等,这时候需要将其转换成统一格式。
内容中有不需要的字符:某些情况使得有些数据中包含不需要的字符。例如从网络爬到的数据会包含一些编码解码的字符如%22,这种情况下,需要以半自动校验半人工方式来找出可能存在的问题,并去除不需要的字符。
数据提取:例如咱们只有用户身份证的信息,但是需要用户生日一列,这时候我们可以直接从身份证号中按照一定规律将生日信息提取出来。
⑼ 大数据处理技术之数据清洗
我们在做数据分析工作之前一定需要对数据进行观察并整理,这是因为挖掘出来的数据中含有很多无用的数据,这些数据不但消耗分析的时间,而且还会影响数据分析结果,所以我们需要对数据进行清洗。在这篇文章中我们重点给大家介绍一下数据清洗的相关知识。
那么什么是数据清洗呢?一般来说,数据清洗是指在数据集中发现不准确、不完整或不合理数据,并对这些数据进行修补或移除以提高数据质量的过程。而通常来说,数据清洗框架由5个步骤构成,第一就是定义错误类型,第二就是搜索并标识错误实例,第三就是改正错误,第四就是文档记录错误实例和错误类型,第五就是修改数据录入程序以减少未来的错误。
我们按照数据清洗的步骤进行工作的时候还需要重视格式检查、完整性检查、合理性检查和极限检查,这些工作也在数据清洗过程中完成。数据清洗对保持数据的一致和更新起着重要的作用,因此被用于多个行业。而尤其是在电子商务领域,尽管大多数数据通过电子方式收集,但仍存在数据质量问题。影响数据质量的因素包括软件错误、定制错误和系统配置错误等。通过检测爬虫和定期执行客户和帐户的重复数据删,对电子商务数据进行清洗。所以说数据清洗倍受大家的关注。
而在RFID领域,有关文献研究了对RFID数据的清洗。一般来说,RFID技术用于许多应用,如库存检查和目标跟踪等。然而原始的RFID数据质量较低并包含许多由于物理设备的限制和不同类型环境噪声导致的异常信息。这就是肮脏数据产生的影响,所以说数据清洗工作是多么的重要。而这一文献则实现了一个框架,这种框架用于对生物数据进行标准化。在该框架的辅助下,生物数据中的错误和副本可以消除,数据挖掘技术能够更高效地运行。
所以说数据清洗对随后的数据分析非常重要,因为它能提高数据分析的准确性。但是数据清洗依赖复杂的关系模型,会带来额外的计算和延迟开销,必须在数据清洗模型的复杂性和分析结果的准确性之间进行平衡。
在这篇文章中我们给大家介绍了很多关于数据清洗的相关知识,通过这篇文章我们不难发现数据清洗的重要性——数据清洗工作占据整个数据分析工作的七成时间。希望这篇文章能够更好地帮助大家。