1. 常见的国内外的数据库管理系统有哪些
常见的数据库系统目前主流的有微软的sql
server、甲骨文公司的oracle和mysql数据库,这些是网络型数据库,当然还有一些为桌面型的数据库系统如access,visual
foxpro等。
2. 数据库有哪几种
常用数据库有mysql、oracle、sqlserver、sqlite等。
1、Oracle数据库
Oracle数据库管理系统是由甲骨文(Oracle)公司开发的,在数据库领域一直处于领先地位。目前,Oracle数据库覆盖了大、中、小型计算机等几十种计算机型,成为世界上使用最广泛的关系型数据管理系统(由二维表及其之间的关系组成的一个数据库)之一。
2、SQLServer数据库
SQLServer是由微软公司开发的一种关系型据库管理系统,它已广泛用于电子商务、银行、保险、电力等行业。SQLServer提供了对XML和Internet标准的支持,具有强大的、灵活的、基于Web的应用程序管理功能。
3、DB2数据库
DB2数据库是由IBM公司研制的一种关系型数据库管理系统,主要应用于OS/2、Windows等平台下,具有较好的可伸缩性,可支持从大型计算机到单用户环境。
4、MongoDB数据库
MongoDB是由10gen公司开发的一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。它支持的数据结构非常松散,是类似JSON的bjson格式,因此可以存储比较复杂的数据类型。
5、MySQL数据库
MySQL数据库管理系统是由瑞典的MySQLAB公司开发的,但是几经辗转,现在是Oracle产品。它是以“客户/服务器”模式实现的,是一个多用户、多线程的小型数据库服务器。而且MySQL是开源数据的,任何人都可以获得该数据库的源代码并修正MySQL的缺陷。
6、Sybase数据库
美国Sybase公司研制的一种关系型数据库系统,是一种典型的UNIX或WindowsNT平台上客户机/服务器环境下的大型数据库系统。
3. 市面上有哪些数据库运维管理系统
我认为安华金和挺不错的
4. 数据库有哪些
目前比较常见的数据库:
SQL是用于访问和处理数据库的标准的计算机语言。
MySQL是小型的开源的关系型数据库管理系统。
SQL Server 是 Microsoft 开发的关系数据库管理系统。
Oracle数据库系统是目前世界上流行的关系数据库管理系统。
DB2是关系型数据库平台,其采用多进程多线索的结构,支持多用户或应用程序在同一条SQL 语句中查询不同数据库和数据。
PostgreSQL 是一个对象-关系数据库服务器,号称 "世界上最先进的开源关系型数据库"。
Hadoop是个很流行的分布式计算解决方案,Hive是基于hadoop的数据仓库工具,hive 构建在基于静态批处理的Hadoop 之上。
GreenPlum采用了MPP(大规模并行处理),是一个由多个独立的数据库服务组合成关系型数据库集群。
ECharts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表。
R是一种集统计分析与图形显示为一体的统计分析软件,具有很强的互动性。
python是一种跨平台的计算机程序设计语言,被广泛用于系统管理任务的处理和Web编程。
目前,这些数据库都在树懒学堂有相关教程,可以跟着一步一步学习
5. 常用的文献检索平台或数据库有哪些
Pubmed是医学,生命科学领域的数据库。提供文献检索,图片检索,影响因子查询,免费全文下载,国家自然科学基金统计分析等服务。
Web of Science数据库是国际公认的反映科学研究水准的数据库。检索精确到文献被收录的期刊、出版公司、作者、日期、页码等。
Seek68文献馆整合了大量知名中外文数据库资源。覆盖各科领域,解决了外文文献下载不了的问题。而且对于疑难文献提供人工帮助。
ProQuest博士论文全文 ,是UMI公司的一个分库。提供期刊、报纸、参考书、参考文献、书目、索引、地图集、绝版书籍、记录档案、博士论文和学者论文集等各种类型的信息服务。
Wiley InterScience收录了360多种科学、工程技术、医疗领域及相关专业期刊、30多种大型专业参考书、13种实验室手册的全文和500多个题目的Wiley学术图书的全文。其中被SCI收录的核心期刊近200种。
OVID是全球着名的数据库提供商﹐在国外医学界被广泛应用。
EMBASE内容涉及药学、临床医学、基础医学、预防医学、法医学和生物医学工程等。除了可以检索丰富的医学文献外,还支持药物和疾病检索。
Ingenta是目前世界最大的期刊数据库之一, 该库收录期刊已超过18,000种,拥有期刊文章索引(或文摘)7百多万篇,广泛覆盖了自然科学与社会科学多种学科的主题。
德国施普林格(Springer-Verlag)是世界上着名的科技出版集团, 通过Springer LINK系统提供学术期刊及电子图书的在线服务。
6. 数据库平台有哪些
SQL Server;Oracle;Sybase ;DB2;还有开源的Post Sql
7. 数据分析平台有哪些
作为一个新兴的市场领域,自助式BI的厂商众多,不同厂商推出的自助式BI产品,在易用性、复杂性和功能上各不相同。有些产品可能主要用于简单的仪表盘和可视化,而不能承担更复杂的任务,如自助数据准备、数据发现或交互式可视化探索。也有类似于Smartbi的全能型BI工具,支持从多数据源整合、ETL数据处理、数据建模、数据可视化、数据分析、数据填报、移动应用的全线功能。总之,选择适合自己的自助式BI,大幅降低商业智能的使用门槛,是企业从数据分析中获益的最快路径。像思迈特软件开发的Smartbi自助分析平台,它主要围绕业务人员提供企业级数分析工具和服务,以业务、问题为向导,让企业里的每一个人释放数据价值,让大数据应用和分析走进员工和管理者工作中,激发各层人员对数据的认知、挖掘和运用;通过推动全员自助分析、数据共享,提升企业数据资产价值,促进业务发展、风险控制和内部管理,进而推动数字化转型大数据可视化是进行各种大数据分析解决的最重要组成部分之一,通过思迈特软件Smartbi数据加工工作都得到了极大的简化,采用“类Excel数据透视表”的设计,多维分析不再需要建立模型,就能够组合维度、汇总计算、切片、钻取,洞察数据。不仅如此,任何字段都可直接作为输出字段或筛选条件,轻松实现对数据的查询与探索。8. 数据分析中数据库管理系统有哪些
1、SYBASE
是一种典型的UNIX或WindowsNT平台上客户机/服务器环境下的大型数据库系统。 Sybase提供了一套应用程序编程接口和库,可以与非Sybase数据源及服务器集成,允许在多个数据库之间复制数据,适于创建多层应用。系统具有完备的触发器、存储过程、规则以及完整性定义,支持优化查询,具有较好的数据安全性。
2、DB2
DB2主要应用于大型应用系统,具有较好的可伸缩性,可支持从大型机到单用户环境,应用于所有常见的服务器操作系统平台下。 DB2提供了高层次的数据利用性、完整性、安全性、可恢复性,以及小规模到大规模应用程序的执行能力,具有与平台无关的基本功能和SQL命令。
DB2采用了数据分级技术,能够使大型机数据很方便地下载到LAN数据库服务器,使得客户机/服务器用户和基于LAN的应用程序可以访问大型机数据,并使数据库本地化及远程连接透明化。
3、SQL Server
SQL Server 是Microsoft 公司推出的关系型数据库管理系统。具有使用方便可伸缩性好与相关软件集成程度高等优点,可跨越从运行Microsoft Windows 98 的膝上型电脑到运行Microsoft Windows 2012 的大型多处理器的服务器等多种平台使用。
Microsoft SQL Server 是一个全面的数据库平台,使用集成的商业智能 (BI)工具提供了企业级的数据管理。Microsoft SQL Server 数据库引擎为关系型数据和结构化数据提供了更安全可靠的存储功能。
4、Access
Microsoft Office Access是由微软发布的关系数据库管理系统。它结合了 MicrosoftJet Database Engine 和 图形用户界面两项特点,是 Microsoft Office 的系统程序之一。
MS ACCESS以它自己的格式将数据存储在基于Access Jet的数据库引擎里。它还可以直接导入或者链接数据(这些数据存储在其他应用程序和数据库)。
5、Visual FoxPro
Visual FoxPro简称VFP,是Microsoft公司推出的数据库开发软件,用它来开发数据库,既简单又方便。Visual FoxPro源于美国Fox Software公司推出的数据库产品FoxBase,在DOS上运行,与xBase系列相容。FoxPro原来是FoxBase的加强版,最高版本曾出过2.6。
之后,Fox Software被微软收购,加以发展, 使其可以在 Windows 上运行, 并且更名为 Visual FoxPro。目前最新版为 Visual FoxPro 9.0,而在学校教学和教育部门考证中还依然延用经典版的 Visual FoxPro 6.0。
9. 常用的数据库软件有哪些
常用的数据库软件有:
1、Oracle
70年代 一间名为Ampex的软件公司,正为中央情报局设计一套名叫Oracle的数据库,Ellison是程序员之一。Oracle是世界领先的信息管理软件开发商,因其复杂的关系数据库产品而闻名。Oracle数据库产品为财富排行榜上的前1000家公司所采用,许多大型网站、银行、证券、电信等都选用了Oracle系统。
2、SQL Server
SQLServer(Structured Query Language Server) 是一个关系数据库管理系统(DBMS)。它最初是由Microsoft Sybase 和Ashton-Tate三家公司共同开发的,于1988 年推出了第一个OS/2 版本。
在Windows NT 推出后,Microsoft与Sybase 在SQL Server 的开发上就分道扬镳了,Microsoft 将SQL Server 移植到Windows NT系统上,专注于开发推广SQL Server 的Windows NT 版本。
3、ACCESS
Access 是微软公司推出的基于Windows的桌面关系数据库管理系统(RDBMS,即Relational Database Management System),是Office系列应用软件之一。
它提供了表、查询、窗体、报表、页、宏、模块7种用来建立数据库系统的对象;提供了多种向导、生成器、模板,把数据存储、数据查询、界面设计、报表生成等操作规范化;为建立功能完善的数据库管理系统提供了方便,也使得普通用户不必编写代码,就可以完成大部分数据管理的任务。
4、DB2
IBM公司研制的一种关系型数据库系统。DB2主要应用于大型应用系统,具有较好的可伸缩性,可支持从大型机到单用户环境,应用于OS/2.Windows等平台下。
DB2提供了高层次的数据利用性、完整性、安全性、可恢复性,以及小规模到大规模应用程序的执行能力,具有与平台无关的基本功能和SQL命令。
5、MySQL
MySQL是一个小型关系型数据库管理系统,开发者为瑞典MySQL AB公司。在2008年1月16号被Sun公司收购。
而2009年,SUN又被Oracle收购。对于Mysql的前途,没有任何人抱乐观的态度。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。
(9)数据库平台有哪些扩展阅读:
Visual FoxPro原名FoxBase,最初是由美国Fox Software公司于1988年推出的数据库产品,在DOS上运行,与xBase系列兼容。
FoxPro是FoxBase的加强版,最高版本曾出过2.6。之后于1992年,Fox Software公司被Microsoft收购,加以发展,使其可以在Windows上运行,并且更名为 Visual FoxPro。
FoxPro比FoxBASE在功能和性能上又有了很大的改进,主要是引入了窗口、按纽、列表框和文本框等控件,进一步提高了系统的开发能力。
网络-数据库软件
10. 大数据技术平台有哪些
Java:只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰溜溜的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接收方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。