‘壹’ 根据图中的数据,你还能想到什么
我想到你肯定忘记贴图了!
‘贰’ 什么是大数据,看完这篇就明白了
什么是大数据
如果从字面上解释的话,大家很容易想到的可能就是大量的数据,海量的数据。这样的解释确实通俗易懂,但如果用专业知识来描述的话,就是指数据集的大小远远超过了现有普通数据库软件和工具的处理能力的数据。
大数据的特点
海量化
这里指的数据量是从TB到PB级别。在这里顺带给大家科普一下这是什么概念。
MB,全称MByte,计算机中的一种储存单位,含义是“兆字节”。
1MB可储存1024×1024=1048576字节(Byte)。
字节(Byte)是存储容量基本单位,1字节(1Byte)由8个二进制位组成。
位(bit)是计算机存储信息的最小单位,二进制的一个“0”或一个“1”叫一位。
通俗来讲,1MB约等于一张网络通用图片(非高清)的大小。
1GB=1024MB,约等于下载一部电影(非高清)的大小。
1TB=1024GB,约等于一个固态硬盘的容量大小,能存放一个不间断的监控摄像头录像(200MB/个)长达半年左右。
1PB=1024TB,容量相当大,应用于大数据存储设备,如服务器等。
1EB=1024PB,目前还没有单个存储器达到这个容量。
多样化
大数据含有的数据类型复杂,超过80%的数据是非结构化的。而数据类型又分成结构化数据,非结构化数据,半结构化数据。这里再对三种数据类型做一个分类科普。
①结构化数据
结构化的数据是指可以使用关系型数据库(例如:MySQL,Oracle,DB2)表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。所以,结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。
但是,它的扩展性不好。比如,如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的,这也容易导致后台接口从数据库取数据出错。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。
②半结构化数据
半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。常见的半结构数据有XML和JSON。
③非结构化数据
非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、各类报表、图像和音频/视频信息等等。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。所以存储、检索、发布以及利用需要更加智能化的IT技术,比如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等。
快速化
随着物联网、电子商务、社会化网络的快速发展,全球大数据储量迅猛增长,成为大数据产业发展的基础。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB。预测未来几年,全球大数据储量规模也都会保持40%左右的增长率。在数据储量不断增长和应用驱动创新的推动下,大数据产业将会不断丰富商业模式,构建出多层多样的市场格局,具有广阔的发展空间。
核心价值
大数据的核心价值,从业务角度出发,主要有如下的3点:
a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;
b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等。
c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等。
大数据能做什么?
1、海量数据快速查询(离线)
能够在海量数据的基础上进行快速计算,这里的“快速”是与传统计算方案对比。海量数据背景下,使用传统方案计算可能需要一星期时间。使用大数据 技术计算只需要30分钟。
2.海量数据实时计算(实时)
在海量数据的背景下,对于实时生成的最新数据,需要立刻、马上传递到大数据环境,并立刻、马上进行相关业务指标的分析,并把分析完的结果立刻、马上展示给用户或者领导。
3.海量数据的存储(数据量大,单个大文件)
大数据能够存储海量数据,大数据时代数据量巨大,1TB=1024*1G 约26万首歌(一首歌4M),1PB=1024 * 1024 * 1G约2.68亿首歌(一首歌4M)
大数据能够存储单个大文件。目前市面上最大的单个硬盘大小约为10T左右。若有一个文件20T,将 无法存储。大数据可以存储单个20T文件,甚至更大。
4.数据挖掘(挖掘以前没有发现的有价值的数据)
挖掘前所未有的新的价值点。原始企业内数据无法计算出的结果,使用大数据能够计算出。
挖掘(算法)有价值的数据。在海量数据背景下,使用数据挖掘算法,挖掘有价值的指标(不使用这些算法无法算出)
大数据行业的应用?
1.常见领域
2.智慧城市
3.电信大数据
4.电商大数据
大数据行业前景(国家政策)?
2014年7月23日,国务院常务会议审议通过《企业信息公示暂行条例(草案)》
2015年6月19日,国家主席、总理同时就“大数据”发表意见:《国务院办公厅关于运用大数据加强对市场主体服务和监管的若干意见》
2015年8月31日,国务院印发《促进大数据发展行动纲要》。国发〔2015〕50号
2016年12月18日,工业和信息化部关于印发《大数据产业发展规划》
2018年1月23日。中央全面深化改革领导小组会议审议通过了《科学数据管理办法》
2018年7月1日,国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》
2019年政府工作报告中总理指出“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”
总结
我国着名的电商之父,阿里巴巴创始人马云先生曾说过,未来10年,乃至20年,将是人工智能的时代,大数据的时代。对于现在正在学习大数据的我们来说,未来对于我们更是充满了各种机遇与挑战。
python学习网,大量的免费python视频教程,欢迎在线学习!
‘叁’ 看到统计表中的数据,你想到了什么
根据统计表中的数据分析一下切合实际的情况,有数据说话是比较有力的,光是口说是没有说服力的。
‘肆’ 地球大约只能养活80亿人口,看到这个数据你想到了什么
人类必须移民火星。这个数据应该是根据地球上的生产者(植物)数量得出的
‘伍’ 数据的作用
就我想到的,有以下的几点:
1.记录作用。用数据记录下来我们可以在很久之后依然能找到
2.数据分析。基于数据来分析对应现象,或者说现象可以由数据抽象出来
3.数据挖掘。可以通过分析数据后,进行同步比对,来发现数据提供源的潜在信息
‘陆’ 林则徐虎门销烟销毁的数据可以让我们想到什么
虎门销烟,是指1839年(道光十九年)中国清朝钦差大臣林则徐在广东省从外商手中收缴鸦片、从中国民间收缴烟膏烟具,并在东莞虎门集中销毁的历史事件。1839年6月3日(即清宣宗道光十九年,岁次己亥四月廿二),林则徐下令在虎门海滩当众销毁鸦片,至6月25日结束,共历时23天,销毁鸦片19187箱和2119袋,总重量2376254斤。缴烟过程中,林则徐对英人“不公强办”,及随后林维喜案的中英司法和军事冲突,成为次年中英第一次鸦片战争的直接导因,并令战败的清政府签订了中国近代史上第一个不平等条约《南京条约》。
‘柒’ 什么是数据观念
数据观念主要表现在以下的这么几个方面:通过收集数据、描述数据、分析数据的过程,作出合理的决策;能对数据的来源、收集和描述数据的方法、由数据得到的结论进行合理的质疑。
具体来说,数据观念包括以下几个方面:
(1)数据的意识。能想到用数据来处理问题。实际上用数据来进行推断是一种重要的思维方式
(2)体会数据中是蕴含着信息的。所以我们要经历收集数据、描述数据、分析数据的过程,即数据处理的过程,把信息提取出来。
(3)根据背景来选择合适的方法。
‘捌’ 一个滴水的水龙头,多长时间能滴一杯水根据你所收集到的数据,你能想到什么数学问题
你需要获取一些必要数据,以下两个工具不可少:
一个量杯,一个秒表。
数据获取:
水滴的速度。数10滴水滴或20滴,用秒表掐时间,多次测量,取平均值,获得水滴速度n,单位滴/秒。
水滴体积。数50、100滴或更多水滴,用空量杯接住,求出每滴水体积v,单位毫升。也是多次测量求平均。
杯子的容积。杯子装满水,借助量杯量出杯子容积V,单位毫升。考虑到倒水可能洒出,也是多次测量取平均。
获得以上三个数据,结果就出来了:
滴满一杯水时间为:
t=V/(nv),单位秒
‘玖’ 什么是数据思维
数据思维是指把营销过程中的各项因素转化成数据进行研究。数据实际上是营销的科学导向的自然演化。
1.定量思维,即提供更多描述性的信息,其原则是一切皆可测。不仅销售数据、价格这些客观标准可以形成大数据,甚至连顾客情绪(如对色彩、空间的感知等)都可以测得,大数据包含了与消费行为有关的方方面面。
2.相关思维,一切皆可连,消费者行为的不同数据都有内在联系。这可以用来预测消费者的行为偏好。
3.实验思维,一切皆可试,大数据所带来的信息可以帮助制定营销策略。
这就是三个数据运用递进的层次:首先是描述,然后是预测,最后产生攻略。
第一步:进行数据的基本管理,先得有数,这里面第一个要有数据意识,看到一些重要的数据要把它记下来,不管是记在头脑当中还是电脑里面,要有这种意识。同时也要求门店或者下属,或者代理商要实时准确客观地传递数据,对企业来讲如果门店没有实时管理这些数据,谈数据化管理就是白谈。
第二步:是要有养数据的意识,我们常常到数据都会想到数据,但是现在很多零售企业都误解了数据这个词,运用数据并不一定就是大数据。传统领域的数据往往都是小数据,离大数据还有很远的距离。特别是很多零售店铺连最基本的数据都没有,现在相当多的零售店铺采用手工输入存储数据的方式。所以数据思维归根结底先得有数据,再去积累数据,最后把数据运用到业务中去,我们才能谈得上去做分析,去做绩效考核,去做管理。