导航:首页 > 数据处理 > 自学数据挖掘需要哪些基础

自学数据挖掘需要哪些基础

发布时间:2022-04-25 07:06:36

⑴ 想自学数据挖掘需要什么基础

我先介绍下我自己,我不是搞纯数学专业的,我是REDHAT LINUX“红帽子”公司的资深系统级工程师。我也做过数据挖掘方面的工作!为一个在甲骨文的朋友搞一些数据方面的工作。所以为了应付我也大概突击了下,才发现这门学科有窍门!
首先,我要说的是我觉得你是一名在校大学生!Data Mining不是你想的那么简单,他不单单和数学有关系,还包括了计算机领域的诸多学科。还有社会工程学、逻辑学等文科和理科的交叉学科!他是一门庞大的体系。你要是真想学我只能给你指条比较快的成才之路,后面的东西自己慢慢学都赶趟!慢慢充实自己!大学四年好好利用!学无止境!
既然是数据分析那你的高等数学必须要过硬,别着急这只是你的其他学科的基础课。其次是概率与统计,这才是正科,大学那点玩意就是糊弄人的,你要多看这方面的书。这个一定要学好!线性必须要会要精通。因为数据划分是数据挖掘里最重要的一个环节。这个就是线性范畴里的了。也要精通,学会线性分析你就发现你就学会了很多。数学有这三个底子就可以了。数学分析不要看了。因为那只是高数的延伸!
计算机你一定要懂。数据库你必须得学会。三大数据库ORACLE.SQL.MYSQL原理基本类似触类旁通!
还有就是培养你的思维,尽量缜密敏捷。这样才可以发现数据中的不同!因为有的数据挖掘是计算机处理的。有的则是纸面上的。所以必须学会记录
好了,就先这么多了。你学会了这几个就是你进军下一步的基础,这几个就够你学一阵子的了。
祝你好运哥们!

⑵ 学习数据挖掘需要那些基础知识

学习数据挖掘需要学习编程语言(Python、C、C++、Java、Delphi等),数据结构和算法,操作系统和网络编程。

数据挖掘涉及的内容比较泛,机器学习、数据挖掘、人工智能,这些知识大多是相通的。编程语言主要是C语言、C++和Java,。我首先这里可以学习C语言圣经《C程序设计语言》以及《C++ Primer》,数据结构和算法推荐《数据结构与算法分析(C语言描述)》。最好有机器学习,涉及到数据挖掘,自然语言处理和深度学习。数据挖掘主要是搜索排序,反作弊,个性化推荐,信用评价等;需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),明白MapRece的原理操作以及熟练使用Hadoop系列工具。

如果想提升关于数据挖掘方面的能力,这里推荐CDA数据分析师的相关课程,教你学企业需要的敏捷算法建模能力,可以学到前沿且实用的技术,挖掘数据的魅力;课程中安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的应用实现,并根据输出的结果分析业务需求,为进行合理、有效的策略优化提供数据支撑点击预约免费试听课。

⑶ 学会用聚类算法进行数据挖掘需要怎样的数学基础

会用聚类算法进行数据挖掘需要线性代数, 变分演算,距离度量,距离矩阵等的数学知识基础。

在数据科学中,我们可以通过聚类分析观察使用聚类算法后获得一些有价值的信息,其中会涉及许多数学理论与实际计算。
主要有以下几类算法:
K-Means(k-平均或k-均值)是普遍知名度最高的一种聚类算法,在许多有关数据科学和机器学习的课程中经常出现。
Mean shift算法,又称均值漂移算法,这是一种基于核密度估计的爬山算法,适用于聚类、图像分割、跟踪等
DBSCAN是一种基于密度的聚类算法,它不需要输入要划分的聚类个数,对聚类的形状没有偏倚。
层次聚类会将每个数据点视为单个聚类,然后连续合并成对的聚类,直到所有聚类合并成包含所有数据点的单个聚类。

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。点击预约免费试听课。

⑷ 数据挖掘需要哪些基础

人工智能、机器学习、模式识别、统计学、数据库、可视化技术等。

数据挖掘从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息,数据挖掘主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据;

作出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。

⑸ 大数据挖掘需要学习哪些技术大数据的工作

首先
我由各种编程语言的背景——matlab,R,java,C/C++,python,网络编程等
我又一定的数学基础——高数,线代,概率论,统计学等
我又一定的算法基础——经典算法,神经网络,部分预测算法,群智能算法等
但这些目前来讲都不那么重要,但慢慢要用到

Step 1:大数据理论,方法和技术

⑹ 怎么自学成为一名数据挖掘分析师

第一,打好基础。如果你把
数据挖掘
比作一个游戏的话,那么你也需要首先从好好练级开始。也就是说,你最先做的事情就是先练级杀小鬼。熟悉基本知识,比如统计学的基础知识,还有
线性代数
,微积分的基础知识。
第二,把握好中级内容。比如多元
统计方法
等等
第三,选好武器,SPSS
CLENTINE
还有SAS什么的,你都要学会。
最后,多走动,多看看,看看高收如何做的,你慢慢就成为高手了:)

⑺ 零基础学数据挖掘应该怎么入门

初级数据分析师需要掌握的技能有:统计学基础、Python语言、网页分析、数据库技术、常用模型理论、数据分析入门并不难,难的是之后的积累才是重点,如何在实际工作、项目中真正发挥数据分析的作用,产生价值。

数据分析师要具备六种核心能力:

1.基础科学的能力

可以说,在数据决策的时代,数据分析几乎渗透到企业的每个业务环节中。掌握统计学,才能知道每一种数据分析的模型,什么样的输入,什么样的输出,有什么样的作用。

2.使用分析工具的能力

任何数据分析师从事业务方向的工作都必须会统计学,统计学的学习最好辅助SPSS或其他SAS来学,做到数据分析基本功扎实,兼顾实战性。学习中,要掌握SQL的基础语法、中级语法和常用函数,结合关系数据库系统来学习SQL语句。

3.掌握编程语言的能力

Python主要掌握基础语法,pandas操作、numpy操作、sklearn建模,学会用python编写网络爬虫爬取数据等等。

4.逻辑思维的能力

逻辑思维对于数据分析来说特别重要。反映商业数据里,大家可以理解为去搭建商业框架或者说是故事线,有逻辑的推进,结果才会另人信服。

5.数据可视化的能力

有了Python的基础,就可以学习数据可视化了。运营和产品都需要学习可视化,Python中可视化的工具有matplotlib,seaborn,ploltly;

6.模型评估的能力

Model建模,知道模型建好后应该怎样去评估,掌握怎样用一些定量的指标,数据、数值来衡量模型建好后到底有多准确,或者说到底有多错误。模型评估的指标或计算方式选择正确与否,能够直接影响到整个项目获模型是否有效。

想要了解更多关于数据挖掘的问题可以到CDA认证中心咨询一下,CDA是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。

⑻ 学大数据需要什么基础

说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。

⑼ 数据分析和数据挖掘学要哪些专业知识

在学数据分析之前,我们首先要明确知识架构。一般来说,数据分析师需要的技能就是这些:需要掌握SQL数据库的基本操作,同时掌握基本的数据管理。会用Excel和SQL做基本的数据提取、分析和展示;会用脚本语言进行数据分析,Python或者R;有获取外部数据的能力加分,比如爬虫;会基本的数据可视化技能,能撰写数据报告;熟悉常用的数据挖掘算法(数据分析算法包括回归分析、决策树、分类、聚类方法等)。这些技能掌握了,就能够入门数据分析师了。

数据挖掘需要的技能:1.需要理解主流机器学习算法的原理和应用。2.需要熟悉至少一门编程语言如(Python、C、C++、Java、Delphi等)。3.需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),能够明白MapRece的原理操作以及熟练使用Hadoop系列工具更好。

更多数据挖掘的信息,推荐咨询CDA数据分析师的课程。CDA数据分析师认证的课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。

⑽ 初学者如何学习数据仓库与数据挖掘技术

初学者短期学会数据仓库与数据挖掘技术比较不现实,不过学术性的随便做个主题应该还不是很难。要想深入学习,建议报培训机构。

1.数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,所以学好数据仓库与数据挖掘技术还是有必要的。
2.数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

如果说想要了解数据仓库和数据挖掘技术,这里推荐CDA数据分析师的相关课程。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括概率统计知识、软件应用、数据挖掘、数据库、数据报告、业务应用等。CDA数据分析师分为LEVELⅠ、Ⅱ、Ⅲ三个等级,成为一名合格的CDA数据分析师能够胜任企业不同层次的数据分析工作。点击预约免费试听课。

阅读全文

与自学数据挖掘需要哪些基础相关的资料

热点内容
正常qq聊天发信息需要多少流量 浏览:154
市面上产品中的继电器用什么供电 浏览:950
小程序看小说哪个好 浏览:286
62数据在哪里看 浏览:254
成都大水产批发市场在什么地方 浏览:257
程序员如何设计一个云备份功能 浏览:833
买一个有赞小程序多少钱 浏览:161
卖家需要什么技术在电子商务中 浏览:65
想学计算机技术应该怎么学 浏览:773
海蓝之谜一套有哪些产品 浏览:421
小商品代理怎么赚钱 浏览:337
夜神模拟器如何复制数据到电脑 浏览:887
太平的重疾保险产品都有哪些 浏览:1000
交易记录如何作为证据 浏览:506
想招代理怎么写说说 浏览:168
如何接信息流拍摄的活 浏览:858
国外的数据为什么总是变 浏览:257
程序员积累什么东西 浏览:570
哪些化工产品产生废油 浏览:70
车辆基本信息标志在哪里 浏览:507