⑴ 统计学中数据挖掘和金融统计哪个有发展 就业前景好
建议做金融统计。看你的情况不论是兴趣还是技能,金融统计是最佳的选择。具体原因:
1、搞金融就业比较好。金融行业的薪水与其他行业相比还是蛮高的。
2、工作了以后你会发现,除了纯粹的算法研究的工作以外,其他的工作都是熟悉业务才是王道。至于用什么数据挖掘算法反而不重要的了,因此,从这一点上考虑如果你积累了许多金融知识,业务上的理论储备,在你以后的工作上会有很大好处。况且你对金融又很感兴趣,而且对计算机(我的理解是java,c/c++之类的编程语言)又不感兴趣。
3、不论是搞数据挖掘还是金融统计,一项最重要的技能是SAS,这个是你从事统计金融或者数据挖掘的最基本的竞争力,如果搞的精的话,可以称作是核心竞争力,只要你把sas搞精通了,你依然可以去从事大部分的数据挖掘工作。因此,你的就业面会更广一点。总之,积累金融知识、学好sas,不论将来你从事金融行业的工作还是数据挖掘工作,都将得心应手。
关于大数据挖掘和金融统计的课程推荐CDA数据分析师的相关课程,它安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的应用实现,并根据输出的结果分析业务需求,为进行合理、有效的策略优化提供数据支撑。课程培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。点击预约免费试听课。
⑵ 数据挖掘与统计分析的区别
数据挖掘与统计分析的区别
多元统计老师说:“数据挖掘是以统计分析为基础的,多数在采用统计分析的方法”。我有不同的观点,就写点东西出来,大家可以自己评述。
我们过去曾给予数据挖掘方法智能的生命力,把它看作商务智能重要的发展方向。但统计学作为一个学科是否应该关心它的发展。我们是否应该将它看成统计的一部分?那意味作什么?最起码它表明我们应该:在我们的杂志上发表这类文章;在我们的本科课程中讲授一些这方面的内容,在我们的研究生中讲授一些相关的研究课题。我们的博士生专业课就有《多元统计》一课;给那些这方面较优秀的人提供一些奖励(工作,职称,奖品)。
答案并不明显,在统计学的历史上就忽略了许多在其它数据处理相关领域发展的新方法。如下是一些相关领域的例子。其中带*的是那些在统计科学中萌芽,但随后绝大部分又被统计学忽略的方法领域。
1模式识别*–CS/工程
2数据库管理–CS/图书馆科学
3神经网络*–心理学/CS/工程
4机器学习*-CS/AI
5图形模型*(Beyes网)-CS/AI
6遗传工程–CS/工程
7化学统计学*–化学
8数据可视化**–CS/科学计算
可以肯定地说,个别的统计学家已经致力于这些领域,但公平地说他们并未被我们的统计学学术圈接纳,主流的学术圈并未接纳这些,至少我没有听到哪个统计学教师钻研神经网络。
既然象上面的一些从数据获取知识的课题和统计学的关系如此冷淡,我们不禁要问:`什么不是统计学`。如果和数据联系并不是一个课题成为统计学一部分的充分理由,那么什么才是充分的呢?到目前为止,统计学的定义好象依赖于一些工具,也就是我们在当前的研究生课程中讲授的那些东西。如下是一些例子:
.概率理论
.实分析
.测度论
.渐近理论
.决策理论
.马耳可夫链
.遍历理论
统计领域好象被定义成一族能提出如上或相关工具的问题。当然这些工具过去和将来都会很有用。就象BradEfron(BradEfron,d)提醒我们一样:“统计是最成功的信息科学。那些忽略了统计的人将受到惩罚,他们将在实际中自己重新发现该统计方法。”
有人认为在当前数据(及其相关应用)以指数方式增长,而统计学家的数量显然赶不上这种增长的情况下,我们统计学应该将精力集中于信息科学中我们作得最好的部分,也就是基于数学的概率推断。这是一种高度保守的观点,当然它也有可能是最好的一种战略。然而,如果我们接受这一种观点,我们统计学家在‘信息革命’浪潮中的作用肯定会逐渐消失殆尽(在这个舞台上的演员越来越少)。当然这种战略的一个很好的优点是它对我们创新的要求很少,我们只需要墨守成规就可以了。
另一种观点,早在1962年就由JohnTukey[Tukey(1962)]提出来了,他认为统计应该关注数据分析。这个领域应该依据问题而不是工具定义,也就是那些和数据有关的问题。如果这种观点成为一种主流观点,那就要求对我们的实践和学术课题作较大的改变。
首先(最重要的),我们应该跟上计算的步伐。哪里有数据,哪里就有计算。一旦我们将计算方法看成是一个基本的统计工具(而不是一种方便地实现我们现成工具的方法),那么当前许多和数据密切相关的领域将不复存在。他们将成为我们领域的一部分。
认真对待计算工具而不是简单地使用统计包–虽然这一点也很重要。如果计算成为我们的一个基本的研究工具,毫无疑问,我们的学生应该学习相关的计算科学知识。这将包括数值线性代数,数值和组合优化,数据结构,算法设计,机械体系,程序设计方法,数据库管理,并行体系,和程序设计等等。我们也将扩展我们的课程计划,它应该包括当前的计算机定向数据分析方法,它们大部分是在统计学科之外发展起来的。
如果我们想和其它的数据相关领域争夺学术和商业的市场空间,我们的某些基本模式将不得不改变,我们将不得不调节对数学的幻想。数学(象计算)只是统计的一个工具,虽然非常重要,但并不是唯一能证实统计方法有效性的工具。数学不等价于理论,反之亦然。理论本来是创造理解力和数学,虽然这很重要,但并不是作此的唯一方法。比如,在疾病的基因理论中数学内容很少,但它却使人们更好地理解许多医学现象。我们将承认经验确认方式,虽然有一定局限性,但的确是一种确认方式。
我们可能也不得不改变我们的文化。每一个参与其它数据相关领域的统计学家都被他们和统计学的‘文化差距’所震撼。在其它的一些领域,‘想法’比数学技术(基础)更重要。一个有启发的‘想法’就被认为是有价值的,若有更详细的确认(理论的或经验的)人们才去讨论它的最终价值。思维方式是‘如果没有证明是有罪的,那就是清白的’这和我们领域的思路是不一致的。过去如果一个新方法不是用数学证明是有效的,我们常常诋毁它,即使不这样,我们也不会接受它。这种思路在数据集比较小和信息噪声比较高时是合理的。特别地,我们应该改变我们诋毁那些表现很好(通常在其它领域),但却没被我们理解的方法的习惯。
个人感觉,也许,现在的统计学正处在一个十字路口,我们可以决定是接受还是拒绝改变。如上所说,两种观点都极富说服力。虽然观点丰富,但谁也不能肯定哪一种战略能保持我们领域的健康发展和生命力。大多数统计学家好象认为统计学对信息科学的影响越来越小。它们也不太同意为此作些什么。站主导的观点认为我们有市场问题,我们在别的领域的顾客和同事不了解我们的价值和重要性。这也是我们的主要专业组织,美国统计协会的看法。在战略计划委员(AmstatNews-Feb.1997)会所作的五年计划报告中有一节‘增强我们学科的声望和健康’,报告中提及“以下的内容意思是:统计学面临危机,市场的,人才的危机。”统计学可以在数据挖掘科学中发挥作用,统计学应该和数据挖掘合作,而不是将它甩给计算机科学家。
有一部分统计专家认为计算机和他们争抢了市场,这个是表面现象。以我们的课程为例,老师讲得很认真,但很多人都没有统计基础,这严重影响了学生对分析过程和结果的理解。SPSS、SAS等分析软件已很优秀,但运行出来的结果仍需进行解释,统计专家的价值也在于此。数据挖掘的可视化比统计分析工具更成功,在目前BI风起云涌的大背景下,企业数据仓库发展到一定阶段,数据挖掘的市场会越来越大,统计专家们的担忧正变为现实。数据挖掘是面向最终用户的,而统计分析的中间转换环节提高了应用成本。
以上是小编为大家分享的关于数据挖掘与统计分析的区别的相关内容,更多信息可以关注环球青藤分享更多干货
⑶ 数据挖掘,数据分析与数据统计有什么区别
严格讲是有区别的:
数据统计,其实就是把数加减起来,得个结果那么简单。统计报表就是干这个的。
数据分析,可以理解成弄一个趋势图之类的。
数据挖掘,就是得出数据之外的东西。类似一份老张的生活数据,结果得出老李家有只猫。
但现实中,往往因为技术和商务的原因,这些被人为地混淆之。再加上客户往往也是外行,所以,很多时候说是做数据挖掘,其实做的数据分析,甚至数据统计。总之,现实中就是别去较真。
⑷ 数据统计分析和数据挖掘有什么区别
从两者的理论来源来看,它们在很多情况下都是极其相似的。在典型的数据挖掘技术的决策树里,CART、CHAID等理论方法都是基于统计理论所发展和延伸的;并且数据挖掘中的技术有相当比例是用统计学中的多变量分析来支撑的。
在信息化时代,数据分析应用的趋势是从大型数据库中抓取数据,并通过专业软件进行分析,所以数据挖掘工具的应用更加符合企业实践和实战的需要。从操作者来看,数据挖掘技术更多是企业的数据分析师、业务分析师在使用,而不是统计学家用于检测。
统计分析的基础之一就是概率论,在对数据进行统计分析时,分析人员常常需要对数据分布和变量的关系做假设,确定用什么概率函数来描述变量间的关系,以及如何检验参数的统计显着性;但是在数据挖掘的应用中,分析人员不需要对数据分布做任何假设,数据挖掘中的算法会自动寻找变量之间的关系。
⑸ 人工智能,机器学习,统计学,数据挖掘之间有什么区别
说到人工智能,就不能不提到机器学习和深度学习。很多时候,我们得先明确人工智能与机器学习和深度学习的关系,我们才能更好地去分析和理解人工智能与数据分析、统计学和数据挖掘思维关联。人工智能与统计学、数据分析和数据挖掘的联系,更多的是机器学习与深度学习,同数据分析与数据挖掘的关联。
0.人工智能
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。
1.机器学习
机器学习属于人工智能研究与应用的一个分支领域。机器学习的研究更加偏向理论性,其目的更偏向于是研究一种为了让计算机不断从数据中学习知识,而使机器学习得到的结果不断接近目标函数的理论。
机器学习,引用卡内基梅隆大学机器学习研究领域的着名教授Tom Mitchell的经典定义:
如果一个程序在使用既有的经验E(Experience)来执行某类任务T(Task)的过程中被认为是“具备学习能力的”,那么它一定要展现出:利用现有的经验E,不断改善其完成既定任务T的性能(Performance)的特质。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。
那机器学习与数据挖掘的联系是什么呢?
机器学习为数据挖掘提供了理论方法,而数据挖掘技术是机器学习技术的一个实际应用。逐步开发和应用了若干新的分析方法逐步演变而来形成的;这两个领域彼此之间交叉渗透,彼此都会利用对方发展起来的技术方法来实现业务目标,数据挖掘的概念更广,机器学习只是数据挖掘领域中的一个新兴分支与细分领域,只不过基于大数据技术让其逐渐成为了当下显学和主流。
2.数据挖掘
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。数据挖掘不能告诉你这些问题的答案,他只能告诉你,A和B可能存在相关关系,但是它无法告诉你A和B存在什么相关关系。机器学习是从假设空间H中寻找假设函数g近似目标函数f。数据挖掘是从大量的数据中寻找数据相互之间的特性。
数据挖掘是基于数据库系统的数据发现过程,立足与数据分析技术之上,提供给为高端和高级的规律趋势发现以及预测功能;同时数据量将变得更为庞大,依赖于模式识别等计算机前沿的技术;其还有另外一个名称为商业智能(BI, Business Intelligence),依托于超大型数据库以及数据仓库、数据集市等数据库技术来完成。
主要挖掘方法有: 分类 、 估计、预测、相关性分组或关联规则、 聚类、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)等技术。
3.深度学习
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。晦涩难懂的概念,略微有些难以理解,但是在其高冷的背后,却有深远的应用场景和未来。
那深度学习和机器学习是什么关系呢?
深度学习是实现机器学习的一种方式或一条路径。其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据。比如其按特定的物理距离连接;而深度学习使用独立的层、连接,还有数据传播方向,比如最近大火的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能,让机器认知过程逐层进行,逐步抽象,从而大幅度提升识别的准确性和效率。
神经网络是机器学习的一个分支,而深度学习又是神经网络的一个大分支,深度学习的基本结构是深度神经网络。
4.数据分析
数据分析的概念:基于数据库系统和应用程序,可以直观的查看统计分析系统中的数据,从而可以很快得到我们想要的结果;这个就是最基本的数据分析功能,也是我们在信息化时代了,除了重构业务流程、提升行业效率和降低成本之外的了。另外数据分析更多的是指从历史数据里面发现有价值的信息,从而提高决策的科学性。数据分析更侧重于通过分析数据的历史分布然后从中得出一些有价值的信息。还有一个数据分析更重要的功能,就是数据可视化。
比如说,在财务系统的信息化中,基于企业的财务系统,我们可以直观获取企业现金流量表、资产负债表和利润表,这些都来自与我们的数据分析技术。数据分析目前常用的软件是Excel, R, Python等工具。
在对比数据分析和数据挖掘时,数据分析则更像是对历史数据的一个统计分析过程,比如我们可以对历史数据进行分析后得到一个粗糙的结论,但当我们想要深入探索为什么会出现这个结论时,就需要进行数据挖掘,探索引起这个结论的种种因素,然后建立起结论和因素之间模型,当有因素有新的值出现时,我们就可以利用这个模型去预测可能产生的结论。
因此数据分析更像是数据挖掘的一个中间过程。
5.总结
人工智能与机器学习、深度学习的关系
严格意义上说,人工智能和机器学习没有直接关系,只不过是机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。
深度学习是机器学习比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。
数据挖掘与机器学习的关系
数据挖掘主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。
机器学习是数据挖掘的一种重要方法,但机器学习是另一门学科,并不从属于数据挖掘,二者相辅相成。
深度学习、机器学习的发展带了许多实际的商业应用,让虚幻的AI逐步落地,进而影响人类社会发展;
深度学习、机器学习以及未来的AI技术,将让无人驾驶汽车、更好的预防性治疗技术、更发达智能的疾病治疗诊断系统、更好的人类生活娱乐辅助推荐系统等,逐步融入人类社会的方方面面。
AI即使是现在,也是未来,不再是一种科幻影像和概念,业界变成了人类社会当下的一种存在,不管人类是否喜欢或者理解,他们都将革命性地改变创造AI的我们人类自身。
⑹ 大数据,数据分析,数据统计和数据挖掘的区别
数据分析与数据挖掘的目的不一样,数据分析是有明确的分析群体,就是对群体进行各个维度的拆、分、组合,来找到问题的所在,而数据挖掘的目标群体是不确定的,需要我们更多是是从数据的内在联系上去分析,从而结合业务、用户、数据进行更多的洞察解读。
数据分析与数据挖掘的思考的方式不同,一般来讲,数据分析是根据客观的数据进行不断的验证和假设,而数据挖掘是没有假设的,但你也要根据模型的输出给出你评判的标准。
我们经常做分析的时候,数据分析需要的思维性更强一些,更多是运用结构化、MECE的思考方式,类似程序中的IF else
而数据挖掘大多数是大而全,多而精,数据越多模型越可能精确,变量越多,数据之间的关系越明确,什么变量都要,先从模型的意义上选变量(大而全,多而精),之后根据变量的相关系程度、替代关系、重要性等几个方面去筛选,最后全扔到模型里面,最后从模型的参数和解读的意义来判断这种方式合不合理。
大数据感觉并不是数据量大,也不是数据复杂,这些都可以用工具和技术去处理,而是它可以做到千人千面,而且是实时判断规则。
例如定向广告的推送,就是大数据,它根据你以往的浏览行为,可以准确的给你推相关的信息,基本做到了你一个人就是一个数据库,而不是一条数据。但我们所作的数据分析更多是针对群体的,而非针对每个个人。
所以大数据时代也显露出了各类问题,数据的隐私、数据杀熟、数据孤岛等,这也许就是我们目前看到大数据分析更看重的是技术、手段的原因。
⑺ 统计分析与数据挖掘有区别吗
统计分析和数据挖掘还是有区别的
其实数据分析的范围广,包含了数据挖掘,在这里区别主要是指统计分析
数据量上:数据分析的数据量可能并不大,而数据挖掘的数据量极大。
约束上:数据分析是从一个假设出发,需要自行建立方程或模型来与假设吻合,而数据挖掘不需要假设,可以自动建立方程。
对象上:数据分析往往是针对数字化的数据,而数据挖掘能够采用不同类型的数据,比如声音,文本等。
结果上:数据分析对结果进行解释,呈现出有效信息,数据挖掘的结果不容易解释,对信息进行价值评估,着眼于预测未来,并提出决策性建议。
数据分析是把数据变成信息的工具,数据挖掘是把信息变成认知的工具,如果我们想要从数据中提取一定的规律(即认知)往往需要数据分析和数据挖掘结合使用。
关于统计分析与数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
⑻ 数据分析、数据挖掘、数据统计、OLAP 之间的差异是什么
OLAP的核心是"维", 可以说是多维分析, 它是让分析人员从不同的角度, 不同的粒度查看数据仓库中的数据, 所以他的实质是查询数据, 但是这个查询也是有技巧的, 需要理解业务, 理解业务之后,提出相应的假设, 然后通过特定维度的数据来验证假设是否正确, 所以OLAP是分析思路是从假设到验证,方法是查询数据, OLAP里的模型是指多维数据模型, 通过哪些维度的数据来描述分析对象, OLAP的建模是指选择哪些维度。
而数据挖掘主要不是查询, 而是做更多的计算, 例如分类,回归是拟合计算, 找到标签与其他特征的规律, 形成模型, 数据挖掘算法会有很多迭代计算, 比OLAP的计算要复杂很多, 另外, 数据挖掘做的更多的是探索式的分析, 分析前是没有假设的. 所以数据挖掘往往能发现一些人为经验忽略的因素。
数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
广义的数据分析,应当是包含数据挖掘和统计的。数据挖掘是面对海量数据时的有效工具,而数据统计是为分析过程提供可靠模型和结果检验的 有效工具。这两个工具可以用在数据分析中,但不只用在数据分析中。数据分析就是数据到有效信息的过程。
数据统计。专注于建模及统计分析,通过概率、统计、离散等数学知识建立合理模型,充分发掘数据内容。例如用回归分析,充分利用网站历史数据,进行评估、预测、反向预测、发掘因素。利用贝叶斯方法建立模型来进行机器学习、聚类、垃圾邮件过滤等。常用工具如:SAS,R,SPSS。
⑼ 数据分析和数据挖掘的区别是什么如何做好数据挖掘哪家做的比较好
数据分析更多采用统计学的知识,对原数据进行描述性和探索性分析,从结果中发现价值信息来评估和修正现状。数据挖掘不仅仅用到统计学的知识,还要用到机器学习的知识,这里会涉及到模型的概念。数据挖掘具有更深的层次,来发现未知的规律和价值。
做好数据挖掘需要以下几个步骤:第一、是商业理解;第二、数据理解;第三、数据准备;
第四、建模;第五、评价。关于数据挖掘的业务很多公司都有,不过并没有专业的数据挖掘公司。
更多数据挖掘的信息,推荐咨询CDA数据分析师的课程。“CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。