导航:首页 > 数据处理 > 数据分析哪些方向

数据分析哪些方向

发布时间:2022-04-21 13:56:19

A. 数据分析工作怎么样就业方向有哪些

【导读】IT行业对于大数据人才的需求量比较大,一方面岗位级别比较高,另一方面薪资待遇也比较可观,而且薪资待遇正呈现出逐年上升的发展趋势。那么,数据分析工作怎么样?就业方向有哪些呢?今天就跟随小编一起来了解下吧!

一、偏向产品和运营,更加注重业务

比如数据分析/数据运营/商业分析,主要工作包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。这类岗位的职位描述一般是:

负责和支撑各部门相关的报表;建立和优化指标体系;监控数据的波动和异常,找出问题;优化和驱动业务,推动数据化运营;找出可增长的市场或产品优化空间;输出专题分析报告。

需要掌握Excel+SQL/hive,了解描述统计学,知道常见的可视化表达,了解一些Python编程,足够完成大部分任务。

二、更注重数据挖掘技术,门槛较高

比如数据挖掘工程师/算法专家,数据挖掘工程师,往后发展,称为算法专家。要求更高的统计学能力、数理能力以及编程技巧,需要扎实的算法能力和代码能力。

除了掌握算法,必须精通SQL/Hive,需要编程能力,Python、R、Scala/Java至少掌握一种,往往也要求Hadoop/Spark的工程实践经验。因为要求高,所以平均薪资高于数据分析师。

以上就是小编今天给大家整理分享关于“数据分析工作怎么样?就业方向有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

B. 数据分析的方向都有哪些

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

C. 数据分析具体包括哪些方面

1. Analytic Visualizations(可视化分析),不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2. Data Mining Algorithms(数据挖掘算法),可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

3. Predictive Analytic Capabilities(预测性分析能力),数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

4. Semantic Engines(语义引擎),我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

5. Data Quality and Master Data Management(数据质量和数据管理),数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

D. 大数据分析有哪些基本方向

【导读】跟着大数据时代的降临,大数据剖析也应运而生。随之而来的数据仓库、数据安全、数据剖析、数据发掘等等环绕大数据的商业价值的使用逐渐成为职业人士争相追捧的利润焦点。那么,大数据剖析有哪些根本方向呢?

1.可视化剖析

不管是对数据剖析专家仍是普通用户,数据可视化是数据剖析东西最根本的要求。可视化能够直观的展现数据,让数据自己说话,让观众听到成果。

2.数据发掘算法

可视化是给人看的,数据发掘便是给机器看的。集群、切割、孤立点剖析还有其他的算法让咱们深入数据内部,发掘价值。这些算法不只要处理大数据的量,也要处理大数据的速度。

3.猜测性剖析才能

数据发掘能够让剖析员更好的理解数据,而猜测性剖析能够让剖析员根据可视化剖析和数据发掘的成果做出一些猜测性的判别。

4.语义引擎

咱们知道由于非结构化数据的多样性带来了数据剖析的新的应战,咱们需求一系列的东西去解析,提取,剖析数据。语义引擎需求被设计成能够从“文档”中智能提取信息。

5.数据质量和数据管理

数据质量和数据管理是一些管理方面的最佳实践。经过标准化的流程和东西对数据进行处理能够保证一个预先界说好的高质量的剖析成果。

6.数据存储,数据仓库

数据仓库是为了便于多维剖析和多角度展现数据按特定形式进行存储所建立起来的联系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的根底,为商业智能系统供给数据抽取、转换和加载(ETL),并按主题对数据进行查询和拜访,为联机数据剖析和数据发掘供给数据平台。

以上就是小编今天给大家整理分享关于“大数据分析有哪些基本方向?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

E. 数据分析专业的就业方向有哪些

数据分析师:偏向商业化的数据分析,运营广告等活动效果分析,销售额或利润预测,用户特征描述等,需要较好的统计知识,需要懂1-2门数据分析工具如SAS、R等;

咨询顾问:面向客户,为客户提供数据抓取、数据分析、出数据报表、改进建议落实等咨询服务,需要有较好的沟通能力,需要懂1-2门数据分析工具如SAS、R等;(咨询顾问其实也分技术和非技术,技术类的主要是为客户搭建数据平台)

数据产品经理:一般是互联网公司独有,数据量大的公司会有自己的数据产品,如阿里巴巴的数据魔方等,主要是针对数据产品从产品立项、提开发需求、跟进产品开发、测试一直到产品上线等工作。(相对来说并不需要对从业者要求很高的数据分析或统计能力,属于目前市场上为数不多但高工资的职位)

F. 数据分析师都有哪些发展方向

要说现在什么工作赚钱的同时还比较有逼格,数据分析师可以说是其中之一。数据分析师算得上是一个新的职业,是伴随着大数据的不断发展而诞生的一个职业。做为一名数据分析师,主要的工作内容就是对大量数据进行及时准确的分析和整理,然后得出结论,进而对公司企业的发展以及决策提供帮助,不仅高薪,同时还比较的高端,属于互联网高科技行业。那么,数据分析师都有哪些发展方向呢?
1.业务方向
一般来说大家在很多招聘网站搜寻数据分析的时候,会发现数据分析的业务方向有两种,一种就是辅助业务的数据分析职位。另一种就是数据分析师职位。辅助业务的数据分析职位在零售业职位中比较多,并且数据分析师对业务必须熟练,同时对自己所面对的业务有很长时间的积淀和理解,这样就能快速的使用数据分析去发现业务流程中存在的问题,通过提出针对问题的解决方案去解决这些问题。由此可见,分析数据支撑着整个商业的逻辑。辅助业务的数据分析师细分职业有市场调查、行业分析、经营分析三类数据。而业务方向中的数据分析师职位一般都是比较专业的,这种专业是具体怎么体现出来的呢?比如产品数据分析师、运营数据分析师和销售数据分析师等等。所以业务方面的数据分析师都是比较专业化的。
2.技术方向
一般来说,数据分析师在技术方面上主要指的是数据挖掘方向,一般来说是分为三种类型。第一种就是数据挖掘工程师、数据库工程师、数据开发工程师。而数据分析师在互联网和金融行业中的岗位是比较多的,当然,在技术方向的数据分析师的工资要比业务方面的数据分析师岗位的工资要高。不过,如果做到了管理层面,业务岗要比技术岗的工资要高。
严格来说,数据分析师的发展方向有很多,以上两种只是比较具有代表性,同时也是大多数从业者的选择。无论是业务方向的发展还是技术方向的发展,都各有优劣,但从整体上来说,数据分析行业做的最后所获得的薪资水平还是非常高的,基本上远高于其它行业的同等级别的从业者,如果大家有志向的话,可以选择从事数据分析行业哦。

G. 大数据分析有哪些就业方向

一、偏向产品和运营,更加注重业务


比如数据分析/数据运营/商业分析,主要工作包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等。这类岗位的职位描述一般是:


负责和支撑各部门相关的报表;建立和优化指标体系;监控数据的波动和异常,找出问题;优化和驱动业务,推动数据化运营;找出可增长的市场或产品优化空间;输出专题分析报告。


需要掌握Excel+SQL/hive,了解描述统计学,知道常见的可视化表达,了解一些Python编程,足够完成大部分任务。


二、更注重数据挖掘技术,门槛较高


比如数据挖掘工程师/算法专家,数据挖掘工程师,往后发展,称为算法专家。要求更高的统计学能力、数理能力以及编程技巧,需要扎实的算法能力和代码能力。


除了掌握算法,必须精通SQL/Hive,需要编程能力,Python、R、Scala/Java至少掌握一种,往往也要求Hadoop/Spark的工程实践经验。因为要求高,所以平均薪资高于数据分析师。


关于大数据分析有哪些就业方向,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

H. 数据分析发展方向有哪些

数据分析有两个主要分支——分析和挖掘。基本的数学知识和机器学习算法在任何方面都需要技能:


1、数据分析发展方向有哪些——本地服务分析


自上而下的“理论”或业务驱动;


与产品和运营的接触较多(这两类同事是主要的工作输出环节)。


常见的头衔包括“数据分析师”、“数据产品经理”、“运营分析师”、“业务分析师”等等。


通常需要Excel/R/Python/SAS, Tableau/PowerBI等软件。使用常用算法了解产品和运营的分析思维,输出产品或运营优化方案并推动其实施。


2、数据分析发展方向有哪些——采矿技术部分


自下而上的数据驱动,寻找更好的模型;


典型的数据对接平台或算法业务(如风险控制);


标题通常包含“开发”、“研发”、“算法”、“挖掘”、“工程”和“大数据”等关键词。


在能力方面,通常需要使用操作系统(Linux/shell等)、大数据软件(Spark/Hadoop/Storm等)、开发语言(C/ c++ /Java/Scala等)、机器学习框架(Tensorflow/Mahout等),熟悉数据结构和算法(数学算法和计算机算法)。


数据分析发展方向有哪些?这才是每个数据分析师关注的问题,数据分析有两个主要分支——分析和挖掘。基本的数学知识和机器学习算法是需要的技能,在任何方向,你能处理好吗?如果您还担心自己入门不顺利,也可以点击本站的其他文章进行学习。

I. 数据分析包括哪些方面

1. Analytic Visualizations(可视化分析)不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。


2. Data Mining Algorithms(数据挖掘算法)可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。


3. Predictive Analytic Capabilities(预测性分析能力)数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。


4. Semantic Engines(语义引擎)我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。


5. Data Quality and Master Data Management(数据质量和数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

阅读全文

与数据分析哪些方向相关的资料

热点内容
电缆技术参数怎么填写 浏览:274
商品交易失信怎么办 浏览:286
微信发错信息怎么恢复 浏览:222
统计学和数据专业哪个好 浏览:717
社会技术学什么比较好 浏览:850
新旧iphone怎么数据同步 浏览:753
大盘交易量10点前说明什么 浏览:717
a股t0交易什么时候正式实施 浏览:672
淮北二手房交易多少套 浏览:989
王者荣耀数据和账户哪个可删 浏览:124
南宁有哪些二手货车交易市场 浏览:813
投资人的信息怎么找 浏览:643
邯郸复兴综合农贸市场怎么样 浏览:678
如何在手机上代理社保签到 浏览:123
登机牌选号哪个小程序 浏览:990
如何做小米产品销售员 浏览:370
持卡人交易确认函是什么 浏览:474
一级代理需要什么资料 浏览:532
黄金交易后怎么盈利 浏览:614
静态代理商有哪些 浏览:688