导航:首页 > 数据处理 > 挖掘数据需要注意什么

挖掘数据需要注意什么

发布时间:2025-03-18 03:32:14

❶ 要学数据挖掘需要哪些基础

数据分析能力是数据挖掘的基础,尤其是EXCEL表格数据处理技能,这对于数据挖掘至关重要。学会如何高效地处理和分析数据,是每一个数据挖掘者必须掌握的技能。

此外,具备政策敏感性也是数据挖掘的重要基础。理解行业政策、企业政策等,并能够从数据中提炼出有价值的信息,这对于把握市场动态、制定策略具有重要意义。

数据挖掘需要具备对企业行业的深刻理解。了解企业的本质管理,挖掘数据间的关联,找出存在的问题,这对提升企业的管理水平至关重要。

数据挖掘者需要能够为高层管理者制定出影响商业绩效的策略与行动计划。这要求他们具备横向和纵向分析的能力,能够从不同角度分析数据,发现潜在的机会和风险。

数据挖掘还需要掌握PPT、SPSS等工具,以便有效地展示和分析数据。这些工具可以帮助数据挖掘者更直观地展示数据结果,提升报告的质量。

针对财务数据,数据挖掘者还需要掌握财务管理及成本核算的基础知识。这有助于他们从财务角度理解数据,发现企业的盈利模式和成本结构。

不同行业有不同的需求。例如,工程领域需要了解工民建知识、工程造价知识;销售管理领域则需要掌握销售管理知识。数据挖掘者需要根据自己的行业背景,不断学习和积累相关知识。

数据挖掘是一个需要长期积累的过程。只有在实践中不断积累经验,才能在这一领域取得突破。但一旦有所突破,就有可能成为行业内的佼佼者,为自己的职业生涯打下坚实的基础。

大数据价值挖掘的三要素

大数据价值挖掘的三要素
如何充分利用大数据,挖掘大数据的商业价值,从而提升企业的竞争力,已经成为企业关注的一个焦点。
全面解决方案才能奏效
当前,越来越多企业将大数据的分析结果作为其判断未来发展的依据。同时,传统的商业预测逻辑正日益被新的大数据预测所取代。但是,我们要谨慎管理大家对大数据的期望值,因为海量数据只有在得到有效治理的前提下才能进一步发展其业务价值。
最广为人知的大数据定义是Gartner给出的大数据的3V特性:巨大的数据量(Volume)、数据的快速处理(Velocity)、多变的数据结构和类型(Variety)。根据这一定义,大家首先想到的是IT系统中一直难以处理却又不容忽视的非结构化数据。也就是说,大数据不仅要处理好交易型数据的分析,还把社交媒体、电子商务、决策支持等信息都融入进来。现在,分布式处理技术Hadoop和NoSQL已经能对非结构化数据进行存储、处理、分析和挖掘,但未能为满足客户的大数据需求提供一个全面的解决方案。
事实上,普遍意义上的大数据范围更加广泛,任何涉及海量数据及多数据源的复杂计算,均属大数据范畴,而不仅局限于非结构化数据。因此,诸如电信运营商所拥有的巨量用户的各类详细数据、手机开关机信息、手机在网注册信息、手机通话计费信息、手机上网详细日志信息、用户漫游信息、用户订阅服务信息和用户基础服务信息等,均可划归为大数据。
与几年前兴起的云计算相比,大数据实现其业务价值所要走的路或许更为长远。但是企业用户已经迫不及待,越来越多企业高层倾向于将大数据分析结果作为其商业决策的重要依据。在这种背景下,我们必须找到一种全面的大数据解决方案,不仅要解决非结构化数据的处理问题,还要将功能扩展到海量数据的存储、大数据的分布式采集和交换、海量数据的实时快速访问、统计分析与挖掘和商务智能分析等。
典型的大数据解决方案应该是具有多种能力的平台化解决方案,这些能力包括结构化数据的存储、计算、分析和挖掘,多结构化数据的存储、加工和处理,以及大数据的商务智能分析。这种解决方案在技术应具有以下四个特性:软硬集成化的大数据处理、全结构化数据处理的能力、大规模内存计算的能力、超高网络速度的访问。
软硬件集成是必然选择
我们认为,大数据解决方案的关键在于如何处理好大规模数据计算。过去,传统的前端数据库服务器、后端大存储的架构难以有效存储大规模数据并保持高性能数据处理。这时候,我们让软件和硬件更有效地集成起来进行更紧密的协作。也就是说,我们需要软硬一体化的专门设备来应对大数据的挑战。
一直以来,甲骨文公司在传统的关系型数据库领域占有绝对优势,但并未因此固步自封。面对大数据热潮,甲骨文公司根据用户的需求不断推陈出新,将在数据领域的优势从传统的关系型数据库扩展到全面的大数据解决方案,成为业界首个通过全面的、软硬件集成的产品来满足企业关键大数据需求的公司。
甲骨文公司以软硬件集成的方式提供大数据的捕获、组织、分析和决策的所有能力,为企业提供完整的集成化大数据解决方案,其中的核心产品包括Oracle大数据机、Exalytics商务智能云服务器和OracleExadata数据库云服务器。
Oracle大数据机用于多结构化大数据处理,旨在简化大数据项目的实施与管理,其数据加工结果可以通过超高带宽的InfiniBand网络连接到OracleExadata数据库云服务器中。OracleExadata可提供高效数据存储和计算能力,配备超大容量的内存和快速闪存,配合特有的软硬件优化技术,可对大数据进行高效的加工、分析和挖掘。同时,甲骨文公司在OracleExadata以及数据库软件层面提供了非常高效和便捷的高级数据分析软件,使数据能够更快、更高效地得到分析、挖掘和处理。
通过Oracle大数据机快速获得、组织大数据之后,企业还要根据对大数据全面、实时的分析结果做出科学的业务决策。OracleExalytics商务智能云服务器能以前所未有的速度运行数据分析应用,为客户提供实时、快速的可视分析。同样,它通过InfiniBand网络连接到OracleExadata上进行数据加载和读取,让大数据直接在内存中快速计算,满足大数据时代对数据分析展现的快速响应需求。OracleExalytics实现了新型分析应用,可用于异构IT环境,能存取和分析来自任何Oracle或非Oracle的关系型数据、OLAP或非结构化数据源的数据。
Oracle大数据机、OracleExalytics商务智能云服务器和OracleExadata数据库云服务器一起,组成了甲骨文最广泛、高度集成化系统产品组合,为企业提供了一个端到端的大数据解决方案,满足企业对大数据治理的所有需求。
坚持开放的战略
从当前的情况来看,在大数据应用领域,仅靠一家厂商的产品难以解决所有问题。因此对于大数据解决方案供应商来说,采用开放的策略是必然选择。甲骨文公司坚持全面、开放、集成的产品策略。这一策略在大数据领域同样适用。
这首先体现在大数据战略在技术上支持Hadoop和开源软件。除了集成化产品,甲骨文公司还拥有一系列领先技术,以帮助用户全面应对大数据应用的挑战,其中包括OracleNoSQL数据库,以及针对Hadoop架构的系列产品。
OracleNoSQL数据库专门为管理海量数据而设计,可以帮助企业存取非结构化数据,并可横向扩展至数百个高可用性节点。同时,该产品能够提供可预测的吞吐量和延迟时间,而且更加容易安装、配置和管理,支持广泛的工作负载。
而专门针对Hadoop架构的产品,能够帮助企业应对在组织和提取大数据方面所面临的挑战,包括Oracle数据集成Hadoop应用适配器、OracleHadoop装载器以及OracleSQL Connector等。
此外,OracleR Enterprise实现了R开源统计环境与Oracle数据库11g的集成,为进行更进一步的数据分析提供了一个企业就绪的、深度集成的环境。
值得一提的是,除对产品和解决方案不断投入,甲骨文公司还致力于和合作伙伴合作开发大数据解决方案。目前,几乎所有的甲骨文合作伙伴都在关注和测试大数据解决方案。甲骨文公司正积极寻找更多本地合作伙伴,为客户提供更加定制化的产品和解决方案。
总而言之,大数据已经和云计算、社交化、移动化一起,成为现阶段驱动企业IT模式变革的重要因素。Oracle大数据解决方案可以横跨IT架构的所有层面,与其他产品进行创新集成,并凭借卓越的可靠性、可扩展性和可管理性,为企业的IT发展,甚至业务发展提供理想的IT基础支持。

❸ 企业如何做好数据挖掘

第一、是商业理解,在我看来,这个商业理解就是要把业务问题转换成数据挖掘问题,目前数据挖掘的理论概念中,一般都包括分类,聚类,回归,关联规则这几类,这需要对这几类方法有一定的理解,才能有效地转换。

第二、数据理解,数据描述了我们的业务,在这一步,我们必须找准对应关系,所面临的业务问题,有哪些数据可以用,我们做的是定量分析,没有数据显然是得不到模型的,知道哪里数据和业务关系紧密,也能让我们的分析事半功倍。

第三、数据准备,实际上数据挖掘的大部分工作都在这一步,往往到了这一步就发现理想很美好,但现实很骨感,数据质量令人堪忧,缺失值,异常值接踵而来,这是数据的错误,还有为了适应算法,需要将数据去量纲化,类型转换,去相关性,降维等等操作,这一步将消耗分析人员大量精力。

第四、建模,这一步需要对算法理解透彻,要了解数据特征和算法特点,才能选择最优算法,以及最优参数,很多算法的使用是有假设条件的,必须仔细掌握,得到的模型才会合理,另外,还要考虑业务需要,如果模型必须能解释,那就要选择生成式模型算法。

第五、评价,就是模型评估了,各种评估指标的侧重点是不一样的,要以最能反应业务的指标为准,另外,评估数据的选择也很关键,要尽可能的模拟实际生产环境,才能评估模型的性能。

❹ 数据挖掘需要学习哪些知识

1.统计知识


在做数据分析,统计的知识肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。


2.概率知识


而朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。


3.数据挖掘的数据类型


那么可以挖掘的数据类型都有什么呢?关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。关系数据库就是表的集合,每个表都赋予一个唯一的名字。每个表包含一组属性列或字段,并通常存放大量元组,比如记录或行。关系中的每个元组代表一个被唯一关键字标识的对象,并被一组属性值描述。


4.数据仓库


什么是数据仓库呢?数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造 。数据挖掘的工作内容是什么呢?数据分析更偏向统计分析,出图,作报告比较多,做一些展示。数据挖掘更偏向于建模型。比如,我们做一个电商的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。电商数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。


关于数据挖掘需要学习哪些知识,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❺ 数据挖掘工程师需要懂哪些知识

1、需要理解主流机器学习算法的原理和应用。

2、需要熟悉至少一门编程语言如(Python、C、C++、Java、Delphi等)。

3、需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),能够明白MapRece的原理操作以及熟练使用Hadoop系列工具更好。

4、经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking in C++》、《数据结构》等。

❻ 数据挖掘 有哪些注意事项

1数据挖掘方法的选择

由于数据挖掘方法功能的各不相同,所以要针对挖掘需求和目标,采用适合的模式和算法,特别是在对多个数字档案馆进行跨馆、跨库挖掘的时候,各馆可能采用不同的数据库系统内核,如ORICLE、SQLSERVER、DBII等等,且各馆馆藏内容也大相径庭,所以在进行数据挖掘的时候应立足于所处的数字化馆藏环境,在方法的选择上有的放矢,不能一概而论。

2数据挖掘结果的准确性

即对数据挖掘质量的控制问题。数字档案馆数据库中涉及大量的数据信息,在这些海量数据面前,不可避免的会出现冗长,甚至错误的数据,所以在进行数据挖掘时,应根据数据挖掘任务的不同,选择适合的挖掘类型和算法,并对出现的错误数据进行修正、处理、加工,为档案馆提供科学合理的各种分析报告和相关预测信息,指导档案馆工作人员采取正确手段,并为档案馆改进服务、作出决策提供智力支持。

3用户隐私的保护

档案馆利用数据挖掘技术优化服务,提高管理水平的同时,也不可避免的增加了侵犯用户隐私权的可能性,因为用户在利用数字档案资源的过程中涉产生大量的个人信息,这些信息包括:用户的姓名、工作、学历、兴趣等,它们一旦被其它别有用心的人所获取,用户就有可能受到,进而造成用户对档案馆的反感,影响到用户的二次利用,所以档案馆应该妥善保管这些信息,建立有效的隐私保障机制,不能在未得到用户授权的情况下将他们的个人隐私泄漏出去。

4人力资源的保障

数据挖掘脱胎于计算机领域,要在基于知识管理的数字档案馆中实施数据挖掘必然离不开优秀的计算机专业人员和管理人员,但只强调专业技术,忽视对其业务技能的培养,也会制约数字档案馆的发展,所以在数字档案馆建设过程中,需要加强对专业技术人员的档案知识补充,同时调整档案馆管理人员的知识结构,使他们尽可能的掌握必要的网络、数据库基础知识。

从实体管理到信息管理,从信息管理到知识管理已是档案馆发发展的不可逆转进程,基于知识管理的数字档案馆是档案馆发展的必然组织形式。数据挖掘可以快速有效地分析和处理来自数字档案馆内外的海量数据和信息,使隐性知识显性化,显性知识结构化,为数字档案馆的科学管理和服务水平的不断提高提供了有力支持,使档案馆向着知识化的方向发展,随着信息技术的不断深入和挖掘算法的不断改进,数据挖掘必将与数字档案馆的知识管理结合得更加紧密,显现出更加强大的生命力。

阅读全文

与挖掘数据需要注意什么相关的资料

热点内容
如何打开应用程序安装 浏览:920
生意技术转让交定金后违约怎么办 浏览:96
股票市场怎么看预期 浏览:210
产品过期怎么修改内外日期 浏览:68
基金交易费用什么时候扣除的 浏览:892
多少万以上工程需要招代理 浏览:724
农信手机银行如何截图交易记录 浏览:719
爬取数据后如何存储 浏览:140
大连有哪些职业技术学校大专 浏览:981
专送如何解绑代理商 浏览:224
富人发信息怎么打招呼 浏览:820
买了二手房如何交易 浏览:318
多多买菜做代理商怎么赚钱 浏览:772
驾驶技术生疏怎么练习 浏览:915
蜂窝数据漫游如何打开 浏览:471
五金加工产品包括哪些 浏览:46
肉类技术型是什么意思 浏览:364
股票交易新盈利16笔怎么投 浏览:60
qq中媒体数据是什么 浏览:333
交易猫怎么找商店客服 浏览:595