⑴ 自学数据分析需要看哪些书的
第一大类:理论类。 理论层面的书籍,比如《大数据时代》 、《数据之巅》 。
第二大类:技术类。 技术层面的书籍,比如《Hadoop技术内幕》系列。这一类的书籍,主要是指系统技术类,在构建大数据系统时,系统如何运作,各系统组件的设计目标、框架结构、适用场景、工作原理、运作机制、实现功能等等。这类书籍,适合于IT系统部,开发部的技术人员。他们需要明白系统的运作机制,利用系统来实现大数据的应用开发,以及系统运维优化等。
第三大类:应用类。 应用层面的书籍,比如《数据挖掘技术》 、《基于SPSS的数据分析》等等。 这一类的书籍,主要是指应用技术类,告诉你如何应用工具和方法,从海量数据中提取有用的信息,来解决真实的业务问题。这类书籍,适合于业务部门、市场营销部门及与业务结合比较紧密的人员。他们更关注业务问题的解决,围绕业务问题来构建分析和解决方案。
⑵ 数据分析师需要学习哪些技能
数据分析师需要学习很多的技能,也正是因为这样,数据分析师的工资是十分乐观的。在大数据的火热发展中,数据分析师这个职业也越来越欢迎,很多人都想进入这个行业,这些人对于数据分析师需要学的东西都是比较关心的,而数据分析师需要学习的技能有很多,需要学习统计学、Excel、SQL、数据分析知识以及行业的知识等等。下面我们就详细地给大家介绍一下这些知识。
首先我们说一说Excel。如果想成为数据师,那么很有必要学会使用Excel这个工具。对于数据分析师来说,Excel是一个必备的技能,经过大量的实践发现,Excel是一个比较靠谱的工具,如果用Excel分析数据,就能够做好数据的分析,同时Excel操作也是比较简单的,不是程序员也能够正常的使用。现在有很多企业都在使用Excel这项工具进行去分析数据,所以,数据分析师必须要学会使用Excel。
然后我们说一说行业知识。对于数据分析师来说,业务的了解比数据方法论更重要。而且业务学习没有捷径,基本都靠不断的思考与不断的总结。这样才能够做好数据分析。
接着我们说一下SQL,其实现在很多人不知道sql是什么,在这里给大家描述一下,sql是所有数据库查询的语言,当然,sql非常容易入手。而数据库也是有很多的类型的,比如mysql、sqlserver、oracle等等,对于不同的数据库,sql语法会有所不同,但是总体上大同小异,只是细微处的差别。如果大家有数据库基础的话,那么只需要找些sql的题目做一做,这样也能够提到sql水平。
而数据分析思维是数据分析师需要注意的事情。如果作为一名数据分析师,需要很缜密的心思以及对数据很敏感的喜欢,这样才能够发现他人会遗漏的东西。有力这些还不够,我们还需要有一个数据分析的思维,那么怎么有一个数据分析的思维呢?一般来说,需要梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即清楚如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。同时,确保分析框架的体系化和逻辑性。
最后给大家介绍一下统计学。一名优秀的数据分析师还应该精通统计学,只有学会了统计学,才能够进行数据分析,数据分析是通过大量的数据进行挑选出有用的数据,这样才能够做好正确的分析。统计学的统计知识能够让我们多了一种角度去看待数据,这样能够看出不同的情况,为数据分析中提供了参考价值。如果你想成为一名出色的数据分析师,那么你就必须要会统计学。
通过上述的内容相信大家已经知道了数据分析师需要学会的技能了,大家在进行数据分析的时候多多注意上面内容的学习,这样才能够学好数据分析。最后祝愿大家早日学成数据分析。
⑶ 如何快速成为数据分析师
1、技能一:理解数据库。
还以为要与文本数据打交道吗?答案是:NO!进入了这个领域,你会发现几乎一切都是用数据库 来存储数据,如MySQL,Postgres,CouchDB,MongoDB,Cassandra等。理解数据库并且能熟练使用它,将是一个基础能力。
2、技能二:掌握数据整理、可视化和报表制作。
数据整理,是将原始数据转换成方便实用的格式,实用工具有DataWrangler和R。数据可视化,是创建和研究数据的视觉表现,实用工具有ggvis,D3,vega。数据报表是将数据分析和结果制作成报告。也是数据分析师的一个后续工作。这项技能是做数据分析师的主要技能。可以借助新型软件帮助自己迅速学会分析。
3、技能三:懂设计
说到能制作报表成果,就不得不说说图表的设计。在运用图表表达数据分析师的观点时,懂不懂设计直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则才能让结果一目了然。否则图表杂乱无章,数据分析内容不能良好地呈现出来,分析结果就不能有效地传达。
4、技能四:几项专业技哗陵大能
统计学技能——统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。从数据采集、抽样到具体分析时的验证探索和预测都要用到统计汪纳学。
社会学技能——从社会化角度看,人有社会性,收群体心理的影响。数据分析师没有社乱竖会学基本技能,很难对市场现象做出合理解释。
另外,最好还能懂得财务管理知识和心理学概况。这些都将会使你做数据分析的过程更容易。
5、技能五:提升个人能力。
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。另外,与数据打交道,细心和耐心也是必不可少的。
6、技能六:随时贴近数据文化
拥有了数据分析的基本能力,还怕不够专业?不如让自己的生活中充满数据分析的气氛吧!试着多去数据分析的论坛看看,多浏览大数据知识的网站,让自己无时无刻不在进步,还怕不能学会数据分析吗?
拥有这些技能,再去做数据分析,数据将在你手里变得更亲切,做数据分析也会更简单更便捷,速成数据分析师不再遥远。
(3)不知道做数据的可以参考什么扩展阅读:
企业对数据分析师的基础技能需求差别不大,可总结如下:
SQL数据库的基本操作,会基本的数据管理
会用Excel/SQL做基本的数据分析和展示
会用脚本语言进行数据分析,Python or R
有获取外部数据的能力,如爬虫
会基本的数据可视化技能,能撰写数据报告
熟悉常用的数据挖掘算法:以回归分析为主
⑷ 数据分析师需要掌握哪些能力,需要做哪些准备
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
参考链接:http://ke..com/link?url=b8z_U8-QuI49JAGq#3
⑸ 想从事数据分析工作,学什么软件或语言最好
Excel
EXCEL是其中最简单的,倒不是容易而是人人都会。但如果是用来分析的话,图表只是基础,还要学会使用透视图以及VBA函数。Excel的功能其实非常强大,尤其是通过学习VBA,几乎能解决所有的问题,但成本就高了,而且Excel的数据处理量并不是很大,几十万而已,大数据量还要另寻方法。
SPSS
SPSS最初是社会科学统计软件,如果刚入门数据分析,懂点SPSS事非常有好处的,当然前提是要懂SQL。SPSS得使用对人的能力要求不高,编程模块很少使用,通常用于科学、市场之类的调研,在院校中使用较多。
有了以上的基础之后,可能就需要精通一门统计分析软件。
近几年的互联网潮,R语言流行起来了,在互联网行业运用较多。R语言是开源的,学习起来并不容易,需要一个长期的过程。
SPSS刚刚有提到,适用于市场研究,上手较快。如果会编程的话,功能还是蛮强大的。
SAS一般是金融行业应用较广,特别是银行业和医学统计,包括一些制造业也很多。银行业通常会用SAS来做统计,数据挖掘也会用到,价格昂贵,学起来比较难,建议网上寻找一些课程和教材来学。
所以打击爱可以针对自己的行业和实际情况来做选择,以上列举的只是大致情况。
Python
以上就是各种数据分析工具和语言的介绍,其次还要掌握一些第三方工具,这些工具一般偏业务化应用,可视化数据展示类偏多,所以在技术上没有太多要求,不过SQL需要掌握。
Tableau
多次介绍过的一款可视化工具,可视化方面应该是做得最不错的工具了,偏前端分析。不懂python不懂R的可以试试。有点贵,土豪们加油!
Qlikview
相对tableau有点丑,不要喷,毕竟人家走数据处理路线,作为BI产品,数据处理速度还是不错的,取个数不至于像tableau慢。两者像互补兄弟,各有优势,但都一样贵,哈哈!所以对数据处理要求较高的话,建议尝试。
FineBI
国内的可视化软件,bi工具。无功无过,重在稳定和应用,国内有一定市场,企业应用挺广。有一定数据分析基础的同学,应该说很快就能上手,免费版无限用!
还有一些D3之类的chart软件这里由于篇幅就不介绍了,主要偏应用,在工作中使用还是蛮广的。
总体来将,每个工具各有优势,但最关键的还是对于业务的熟悉度,没有远离和思路,任何工具都用不起来,所以在做数据分析时,一定要扎根学习业务和数据建模方法,工具不是万能的!
⑹ 直播间里的流量不高,能不能带货,带货的数据不好,该如何做好数据呢
1.数据不理想可能由于账号规模粉丝量还没有做起来,可以选择相关的公开课去学习一些,但是课程其实都是方法论,只能起到6成的作用,可能会帮助自己不会掉很多坑但是不代表学了多少知识就可以做出爆款账号。在了解了知识体系后应该做的是更深度的思考,在某一品类下至少要花费很多时间去浏览深挖同品类成功品牌的营销链路去调研清楚。调研后实操也是一大重要环节,可能总结出5套营销方式,可以每个方式用10个账号去尝试,过一段时间后选出5个自然流量效果最好的去孵化。
2.建议自己寻找第三方数据平台,例如星榜数据。里面会有带货的排行榜单,可以参考抖音带货商品排行榜,对应着的商品类别,顺应趋势去做内容。
3.关于投放问题,都希望找到性价比高的达人。目前抖音或快手的直播带货正处于不断试错的阶段,如果需要可以去找带货达人去做直播。现在很多达人会去以纯佣的形式进行,如果品有足够大的优惠力度是很容易去做测试的
⑺ 店铺业绩下滑,销售分析需要哪些数据才能做参考
定期进行科学的数据分析,是门店负责人掌握门店经营方向的重要手段。
门店经营指标数据分析
销售指标分析:主要分析本月销售情况、指标完成情况、与去年同期对比情况。通过这组数据的分析可以知道同比销售趋势、实际销售与计划的差距。
销售毛利分析:主要分析本月毛利率、毛利额情况,与去年同期对比情况。通过这组数据分析可以知道同比毛利状况,以及是否在商品毛利方面存在不足。
营运可控费用分析:主要是本月各项费用明细分析、与去年同期对比情况,有无节约控制成本费用。这里的各项费用是指:员工成本、能耗、物料及办公用品费用、维修费用、存货损耗、日常营运费用(包括电话费、交通费、垃圾费等),通过这组数据的分析可以知道门店营运可控费用的列支,是否有同比异常的费用发生,有无可以节约的费用空间。
坪效:主要是本月坪效情况、与去年同期对比。日均坪效,是指日均单位面积销售额,即:日均销售金额÷门店营业面积。