导航:首页 > 数据处理 > 为什么要用大数据

为什么要用大数据

发布时间:2022-04-20 11:33:37

⑴ 什么是大数据,大数据为什么重要,如何应用大数据

“大数据”简单理解为:

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。大数据是一个抽象的概念,对当前无论是企业还是政府、高校等单位面临的数据无法存储、无法计算的状态。大数据,在于海量,单机无法快速处理,需要通过垂直扩展,即大内存高效能,水平扩展,即大磁盘大集群等来进行处理。

大数据为什么重要:

获取大数据后,用这些数据做:数据采集、数据存储、数据清洗、数据分析、数据可视化

大数据技术对这些含有意义的数据进行专业化处理,对企业而言,大数据可提高工作效率,降低企业成本,精准营销带来更多客户。对政府而言,可以利用大数进行统筹分析、提高管理效率、管理抓获犯罪分子等。对个人而言,可以利用大数据更了解自己等。

如何应用大数据:

大数据的应用对象可以简单的分为给人类提供辅助服务,以及为智能体提供决策服务

大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合。具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。通俗地讲“大数据就像互联网+,可以应用在各行各业",如电信、金融、教育、医疗、军事、电子商务甚至政府决策等。



⑵ 大数据时代,为什么要使用大数据

大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据集合的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,图片,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)从不同的方面表达了客户的消费过程的方方面面。因此,一般来说,企业用以分析的数据来源越广越全面,其分析的结果就越立体,越接近于真实。因此,大数据分析意味着企业能够从不同来源的数据中获取新的洞察力,并将其与企业业务体系的各个细节相融合,以助力企业在创新或者市场拓展上有所突破。针对“数据量”这个话题,亚马逊CTO Vogels曾经说过,“在运用大数据时,你会发现数据越大,结果越好。为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持。一旦进入大数据的世界,企业的手中将握有无限可能。”可以预料,在不远的未来,企业如何通过抓住用户获取源源不断的数据资产将会是一个新的兵家必争之地。在这个层面上,Facebook、Twitter、Google、Amazon,包括电信运营商等领先企业具有无可比拟的优势。在大数据的领域里是否数据量越大越好?很多时候我们写文章,并不是想要去重复某一个众所周知的事实,而更多的是想从另外一个角度试图去质疑那些已成事实的事实,并不是想要去推翻,而只是去看这个事实是否存在另外的可能性,虽然很多时候我的那些质疑会漏洞百出,并显得幼稚可笑,但我觉得一个事物的健康发展需要不同的声音,而这正是我们写文章的意义所在。所以,我现在问题是,在大数据的领域里是否数据量越大越好?对于这个问题,我觉得应该分两个层面来看,第一个层面是,对大数据这个整体而言,数据肯定是越大越好的,多元的数据能让不同行业,不同组织都可以从大数据中寻找到解决问题的方法,也是基于此,现在越来越多的企业组织通过不同的终端、应用或者其他手段去疯狂地收集多元的数据,大数据让人们能有足够的能力和视野将地球(包括地球上的一切)作为一个整体去看待,这是在从前无法想象的。第二个层面是,对于大数据的具体应用而言,数据量是否越大越好,我却有不同的看法。我的理解是,在大数据的实际应用中你用以分析的数据量越大,你能得到的东西就越多,而至于得到的那些东西是否是你所需要的,或者对你是否有价值的,没有人能保证。就如同树林里有100条路,每条路上都有一些你觉得有意思的东西,如果你有足够的时间,你可以走遍这100条路,收获很多有意思的小东西,但不是每一条路都会让你得到真正有价值的东西。经常做数据分析的朋友应该会有同感,在分析的过程中你会发现不同的数据通过不同的组合导入不同的分析模型会得到很多不同的结果,有时候会有一些很新鲜的结果被发现,这会让你很惊喜,但大部分这些新鲜的结果最后只会出现在你的微博里,而不会出现在正式的分析报告中,因为分析报告是为解决某一具体问题而存在的,旁枝末节太多会显得臃肿且容易混淆。所以,我认为,在大数据的具体应用面前,我们先要做的是把“大数据”这个概念忘掉,我们必须弄清楚到底想从大数据中得到什么,然后带着目的去收集有用的数据,输入至分析模型中,直接导向我们想要的结果。否则你将花费大量时间、资源成本去获取数据,分析数据。我们需要大数据应用是能够帮助解决问题的行为洞察,而不是试图研究每一条能够得到的信息。不得不说,大数据的世界太魔幻了,里面的诱惑很多,如果你不是带着明确的目标去应用,你很有可能被陷入在五光十色的诱惑中无法自拔。即使你走进了一座金山,最后你能带走的最多也只是你能提动的一小口袋。另外,这同时也揭示,为了避免应用者困在“大数据的金山”,大数据必须往下细化,针对不同行业不同领域的特定问题制定不同的解决工具,未来大数据将会遵循消费化模式,核心基础设施将作为服务或应用程序来提供。

⑶ 大数据有哪些重要的作用

我们正处在科技高速发展的时代,如今互联网已经与我们的生活息息相关,我们每天在互联网产生大量的数据,这些数据散落在网络中看似没有怎么作用,但是这些数据经过系统的处理整合起来确实非常有价值的。

一、发展大数据技术可以提高生产力

大数据技术在企业已经成为投入使用很成功的案例,很多应用程序开发商和大型公司都运用大数据技术扩展大数据项目。大数据技术在运用时可以通过数据挖掘知道最需要的数据是哪些,通过这些数据获取更多的生产力,提高生产能力,为企业带来更多的商业价值。目前有很多企业通过数据挖掘分析解决问题,相对来说大数据分析比着传统的数据分析速度更快,更能获取可“回收利用”的信息流量,提高行业内的生产力。

二、发展大数据技术可以改善营销决策

近几年的数据量暴增,数据盈利也很可能成为未来收入的主要来源,大数据技术在海量数据的分析中,寻求到最合适的企业营销策略,通过数据分析给企业带来更明智的策略。

大数据工程师通过对客户的数据精湛分析,分析行业内的流行趋势并且定制出更适合的产品或者服务,通过对定价的检测和分析对客户忠诚度有效评估,一系列的运用大数据及时改善营销决策,给企业带来有价值的数据决策。

三、发展大数据技术的未来优势

大数据行业的兴起,许多开发企业都意识到,想要在行业内不断的发展就要运用大数据技术,提升自身企业的品牌价值,在行业比拼中寻求更多的竞争优势,微软亚马逊等大型跨国公司目前都在采用大数据解决问题,为消费者提供更好的服务。

目前有很多行业和企业都尝到大数据技术的甜头了,未来会有越来越多运用大数据技术的产业,以现在大数据发展的速度来看,2020年大数据的市场规模将达到2030亿美元,很多企业都在期盼大数据项目可以运用的范围更广阔,然后通过运用产生更大的利益空间。

大数据技术能为行业提高生产力、改善营销决策,给企业带来更好的发展前景,目前大数据技术发展虽然在初级阶段,但是发展势头很猛,未来也会有更多的行业领域涉足大数据技术运用,大数据技术未来发展形式一片大好!

当下,大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师,如果想系统的学习编程的可以来我这看看。

对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。

一、ETL研发

企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。

二、Hadoop开发

随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。

三、可视化工具开发

可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。

四、信息架构开发

大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。


五、数据仓库研究

为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。

六、OLAP开发

OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。

七、数据科学研究

数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。

八、数据预测分析

营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。

九、企业数据管理

企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。

十、数据安全研究

数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。成都加米谷大数据培训机构,专注于大数据人才培养。

希望对您有所帮助!~

⑷ 为什么要使用企业大数据分析

为什么要使用企业大数据分析

当网络已经迅速的融入到人们的工作和生活当中,企业的经营管理过程中也无法离开网络,尤其是随着大数据时代的到来,对于企业来说,经营管理已经不仅仅是人为控制的活动,更多的是大数据操控的经营理念问题。那么,禧金信息大数据对于企业的重要价值到底是什么呢?下面,就让我们一起来了解一下吧。第一、分清大数据的含义
当人们的工作和生活被“大数据”概念不断充斥的时候,企业则不能在这个概念问题上有误会,要分清楚大数据的含义。大数据并不等同于数据分析。大数据具有更为告诉、大规模、多样性的特点,企业能够利用大数据对各种经营管理过程中所产生的数据进行有效迅速的收集、处理和分析,对有价值的数据进行提取,从而能够获得对于企业的发展和经营更有助力和针对性的方案。
第二、大数据改变企业运作模式
在传统的企业管理过程中,管理通常都是由领导说了算,而随着大数据的发展,现代企业在经营管理过程中,侧重的更多是大数据所分析出来的结果。这样的模式,对于传统领导力是一种挑战,同时,也是企业能够在互联网络时代中得以继续发展和兴旺的基础。
第三、大数据的质量问题
对于企业来说,大数据的质量问题也是具有非常重要的价值。大数据的采集、整理和分析处理的基础,就是要保证大数据所得出的结论能够给企业带来足够的帮助,而不是提供一些毫无意义的建议。如果不能把控大数据的质量问题,企业内部则无法通过数据信息来获得实质性的决策帮助。
第四、大数据对决策的辅助作用
归根结底,大数据对于企业的经营管理中所存在的重要价值就是对于决策的辅助作用。通过大数据的有效分析,能够总结企业经营管理经验,对发展趋势做出预测。

⑸ 应用大数据的目的有哪些 这才是大数据工程师要掌握的

大数据应用的目的可以分为跟踪、监控、洞察、预测和验证


对于企业运营而言,数据应用最重要的目的是预测未来趋势,优化资源配置


1、应用大数据的目的有哪些——预测未来的趋势:


利用数据来监测现实和预测未来是大数据的一个很酷的应用。


下面是一些栗子:


例如,根据GIS地理信息系统的数据,当地居民的特点(收入和消费水平、人口结构、生活喜好,等等)不同的区域可以被理解,从而预测不同地区的消费能力和偏好的城市,它有很好的指导作用来存储位置选择或差异化的广告。


再比如,通过对天气数据和超市销售数据的深入挖掘和分析,可以发现特定天气和特定商品销售之间的关系,从而有效地指导零售商调整库存和货架布局。一位零售商发现,在台风季节,在一个沿海城市,烈性酒的销量增加了,就像他们多年来所做的那样,因为人们不需要在刮风的日子出去工作,所以他们可以喝烈性酒。


数据本身的价值没有现在那么高。如何将海量数据转化为可接受的信息和知识,从而最大限度地展示数据内容,实现数据价值最大化,一直困扰着数据的发展。


刚刚提到的天气和板栗零售商品。台风天气预报是数据,葡萄酒销售是数据,两者结合得到台风天气销售增长,是一条信息。此外,人们更有可能在天气不好的时候购买烈性酒,这是一个销售指南。


这是一种基于数据预测未来趋势的简单方法。


2、应用大数据的目的有哪些——优化资源配置


利用数据优化资源分配正变得越来越重要,主要是因为今天的数据真的“快”了。


将啤酒放在尿布旁边可以促进啤酒销售的一个经典例子就是优化资源配置。


前段时间,滴滴打车通过对不同时间段用户打车服务数据的分析,总结出不同时间段的车辆使用高峰期,可以用来分配和调动司机,使资源以最优模式运行。


我个人认为,它更像是帮助企业的“大”数据。数据处理速度的大幅提高,给了市场足够的时间来优化资源配置,实现真正的效率。


从工厂根据库存和市场监测优化工人分配或生产,到餐馆根据季节和订单条件优化采购配料和厨房配菜。


应用大数据的目的有哪些?大数据工程师表示这才是必须的,我们有充分的理由去寻找更多的数据,因为数据分析推动了数字创新。然而,将这些大数据集转化为可操作的见解仍然是一个挑战,你能处理好吗?如果您还担心自己入门不顺利,可以点击本科目的其他文章进行学习。

⑹ 我们为什么需要大数据技术

我们为什么需要大数据技术
大数据到底是什么?我们为什么需要大数据技术?
Mike Jude:从本质上来说,大数据就是曾经被称为数据仓库的逻辑延伸。顾名思义,大数据就是一个大型的数据仓库,一般有一个能支持业务决策的业务重点。但是,它和传统数据库不同的是,大数据不用构建。
在典型的数据库中,数据会被组织成标准的字段,并使用特定的密钥索引。如果你熟悉Microsoft Access应用程序,那么你就能完全理解这个概念。比如,一个顾客记录可以由姓氏、名字、地址和其它信息组成有通用标签的字段。每个顾客记录样式都是相同的,这样可以通过使用搜索关键词来检索,比如搜索姓氏。
现在,如果你想链接到这些客户记录需要怎么做?链接到客户的图片或者视频呢?如果是链接到客户的所有记录呢?
将这么多不同的数据源互相映射,一般的数据库还做不到。另外,需要链接的数据量是非常巨大的。这就产生了“大数据”的概念。大数据使用特殊的数据结构来组织和访问巨大数量的数据,可能达到多个艾字节的范围。一般情况下,这需要跨多个服务器和离散数据存储进行并行计算,而小企业往往难以维持这种大数据的存储库。但是,大数据正逐渐成为云服务提供商能提供的一种服务,从而把大数据应用推向更多的公司。
但是,还有一个“大”问题,就是我们为什么需要大数据?答案就是相关性的价值。如果你能看到乍一看似乎没什么关系的数据设置之间的关系,你会获取很多重要信息。比如你想知道你的公司是不是容易被黑客利用。那么你需要跨多个应用程序和数据中心检查无数条交易。这时如果没有大数据技术和相关的分析技术,这几乎是不可能完成的。
最终,随着数据量的增长、业务的可用性和重要性的增加,大数据的定义可能会用来描述大多数数据库应用。IT专业人士应该掌握大数据相关概念和术语,以免遇到困难。

阅读全文

与为什么要用大数据相关的资料

热点内容
华为和伙伴如何协同保证交易信息 浏览:672
养生产品的logo图怎么做 浏览:475
权健产品怎么样视频 浏览:29
淘宝怎么导入数据包 浏览:510
数据产品经理培训班有哪些 浏览:648
超核小程序绑定生日信息哪里看 浏览:758
指尖江湖交易行上架要多久 浏览:292
超级程序怎么卡bug 浏览:767
市场最畅销的小吃有哪些 浏览:249
出售信息在哪个网站 浏览:10
王者发信息敌方如何看到 浏览:429
okady的产品质量怎么样 浏览:488
苏宁支付为什么不能交易呢 浏览:7
大宗商品什么时候可以交易 浏览:565
卖煎饼的技术去哪里学 浏览:661
如何将微信小程序里的内容拷贝 浏览:294
电商行业有哪些数据包 浏览:326
微信的系统技术升级中什么意思 浏览:690
技术控是怎么表白 浏览:715
钉钉填完表信息采集中是什么意思 浏览:825