A. 如何设计成功而有价值的数据可视化
[what]什么是数据可视化?
塔夫特所说,“图形表现数据。实际上比传统的统计分析法更加精确和有启发性。”对于广大的编辑、设计师、运营分析师、大数据研究者等等都需要从不同维度、不同层面、不同粒度的数据处理统计中,借助图表和信息图的方式为用户(只获得信息)、阅读者(消费信息)及管理者(利用信息进行管理和决策)呈现不同于表格式的分析结果。数据可视化技术综合运用计算机图形学、图像、人机交互等,将采集、清洗、转换、处理过的符合标准和规范的数据映射为可识别的图形、图像、动画甚至视频,并允许用户与数据可视化进行交互和分析。而任何形式的数据可视化都会由丰富的内容、引人注意的视觉效果、精细的制作三个要素组成,概括起来就是新颖而有趣、充实而高效、美感且悦目三个特征。
[why]为什么要进行数据可视化?
无论是哪种职业和应用场景,数据可视化都有一个共同的目的,那就是准确而高效、精简而全面地传递信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。并且利用合适的图表直截了当且清晰而直观地表达出来,实现数据自我解释、让数据说话的目的。而人类右脑记忆图像的速度比左脑记忆抽象的文字快100万倍。因此,数据可视化能够加深和强化受众对于数据的理解和记忆。
[how] 如何实现可靠的数据可视化
数据可视化包括数据的采集、分析、治理、管理、挖掘在内的一系列复杂数据处理,然后由设计师设计一种表现形式,或许是二维图表、三维立体视图,不管是什么样的信息图,最后由前端工程师创建对应的可视化算法及前端渲染和展现的实现。如果仅仅是能够将数据转化成漂亮的图表,设计出固定维度、不同式样的图表来解释你的观点,并不说明这样的结局就足够好。这只是一个简单的开始,只是一个美好愿望的萌芽。如果要成功报告结果,将你所分析的度量和数据有效地转化为有商业价值的见解,使其能够为基于事实所做的决策提供支持,那么还需要做更多的功课。
色彩提升信息可视化的视觉效果。在信息可视化通过造型元素明确传达信息及叙述的基础上,把握好视觉元素中色彩的运用,使图形变得更加生动、有趣,信息表达得更加准确和直观。色彩可以帮助人们对信息进行深入分类,强调和淡化、生动而有趣的可视化作品的表现形式,常常给受众带来视觉效果上的享受。当然,视觉效果要将企业品牌的色调融合进去,和企业的品牌文化保持高度的一致,这是一个最基本的常识。比如,如果企业的品牌色调比较热衷红色,你设计的可视化效果,就要有意识地朝着这个基调靠拢。但没有必要吻合,因为红色的可视化效果,通常都包含警示的韵味,所以,红色适合做预警、提醒和突出信息的功能。
排版布局增强信息可视化的叙事性。我有酒,你有故事吗?排版布局四大基本原则:
(1)对比(Contrast): 如果两个项不完全相同,就应当使之不同,而且应当是截然不同。
(2)重复(Repetition):设计的某些方面在整个作品中重复。
(3)对齐(Alignment):任何元素都不能在页面上随意安放。每一项都应当与页面上的某个内容存在某种视觉联系。
(4)亲密性(Proximity):将相关的项组织在一起,使它们的物理位置相互靠近相关的项将被看作凝聚为一体的一个组。
动态增加信息可视化的视觉体验。在信息可视化的视觉表达中,动态地将相互分离的各种信息传播形式有机地融合在一起,进行有关联、有节奏的信息处理、传输和实现。最终的目的是,为了实现数据之间的联动,解释数据表现之间驱动和联系的关系。通过图表样式和色彩的运动,满足受众的视觉感受,同时将信息内容更加深刻而精简地传达给阅读者,使整个信息传达的过程更加轻松便捷。对于数据可视化有诸多工具,如:ECharts、iCharts、D3js、Flot、Raphaël等功能都十分强大,但对于非专业可视化而又经常与图表打交道的职场人士来说,一款轻便易学而又实用的可视化软件则显得十分重要。比如cognos、tebleue等。如果需要展现的数据结构不是特别复杂,而又要把数据展现的绚丽多彩,而且具有交互性,那么水晶易表是不二之选。
1.谁是你的阅读者?
无论你是否在做一份传统的报表还是新式的信息图,首先问问自己有哪些阅读者看到这份报告?他们对将要讨论的事项了解多少?他们需要什么?、还有,他们会如何利用你要展示的信息和数据呢?而我在 《一份靠谱的数据分析报告都有什么套路?》 里讲过,明确清晰的分析目标和方法会有多重要,因为只有明确分析目标,才能有一个良好的驱动过程。无论是目标驱动还是分析过程驱动,后续的数据分析工作和分析报告里所要呈现的全部内容事项都是紧紧围绕着这个目标主题而服务的。
2.规划数据可视化方案
数据可视化方案,是一定是能够解决用户特定问题的。既然是能够解决用户特定的问题,那么这样的高度,是在基于你在深入地理解了这些数据的现象和本质的基础之上。简单来说,就是你的可视化方案,不仅懂得并且能够很好地解释数据分析的结论、信息和知识。并且管理者能够沿着你规划的可视化路径能够迅速地找到和发现决策之道。
举例来说,当企业的业绩不达标时(企业的业绩是否达标,关系到企业最关键的利益和存亡。)可视化方案的设计路径应该是这样的:
Step1,从整体运营出发,明确有哪些关键因素会影响成交和业绩。
比如:有效名单、demo品质、客服服务、产品属性等,相应地去看这些关键因素对应的KPI的表现,对整体的业绩来讲,这些因素都会是驱动因素,这些因素对应的KPI都会是对STV有直接驱动和影响作用的。这些驱动数据的可视化是基础,也是寻找解决方案最终的出发点和落脚点。因为,这些数据的表现,是关乎运营成功与否的最直接视图。
Step2,对关键因素深入分析确定是什么因素导致了业绩没达成,发现和挖掘导致业绩未达标的根本原因和问题。
比如:
1、对比分析,逐一观测201601月-201612月全部关键因素对应的KPI的表现,对比成交业绩最高的月份和成交业绩最差月份的关键因素对应的KPI差异在哪里,能够快速定位出哪些方面、哪些因素导致业绩未达标。然后能够有针对性地驱动和帮助业务部门去改善。
2、追踪对成交和业绩有驱动和改善的行动方案的落地和实施进度,存在什么样的问题,是否存在行动方案的执行不力影响了业绩达标。
Step3,针对这些问题因素,有的放矢地去做改善和探索提升业绩之道。
否则,设计再商业绚丽的可视化图表,如果不能快速地得到信息和商业决策建议和方案就毫无意义。可视化仅仅成了虚假和欺骗,华丽而不务实的结果。基于准备好的全部的这些问题所得出的答案,就要开始定制你的数据可视化方案以满足每个决策者的特定要求。数据可视化始终都应该是为其受众专门定制的,这样的报告里只应包括受众需要知道的信息,且应将这些信息置于和他们有关并对他们有意义的背景下。
3.给数据可视化一个清晰的标题。
当你的报告像一份报纸、杂志的新闻一样。从这个标题,就能给阅读者强烈的冲击。一个清晰的标题是能够很好地阐释报告和故事的主题,是对整个报告和故事概括的信息。当然,并不是鼓励运营分析人员去做“标题党”。好的标题,既不要模棱两可,也不要画蛇添足,只要解释清楚图表即可。这有助于帮受众直接进入主题。这样能让读者大致浏览文件,并能快速抓住核心所在。尽量让你的标题突出。
4.将数据可视化和你的策略、方案联系起来
如果数据可视化的目的在于介绍能解决具体的、可衡量的、可执行的、有相关性和时效性问题的数据,那就在开场白里加上这些问题。稍后再和你的策略连接起来以理清这些数据的定位,因此,读者便能立刻明白可视化数据的相关性和价值。最终,他们便能更好地参与进来,并能够更明智地利用这些信息。数据可视化,最终时为了企业良好的运营而服务的,这是它的商业价值。如果你不关注企业的战略和行动方案,很难建立起具有联动价值的信息图。比如,企业执行的行动方案,通常是为了达成和实现企业的战略目标,通过这样的手段实现精益管理和精益运营。所以,可视化的解决方案要能够做到,行动方案对战略目标的驱动效果、个体、团队对部门整体指标、KPI的驱动和影响效果。只有建立起来具有联系的信息视图,才会获得有价值的数据可视化。
5.明智地选择你的展示图表。
不管使用哪一类图表,bar图、折线图、雷达图等等,每一种图表都有它自身的优点和局限性。你无法找到完美的可视化图表。但你可以通过尝试混合展现方式让可视化表现再人性化一点点。所以的可视化效果,都应该尽可能简单精准地传达讯息。这就意味着:不论有多新潮、多好看或者多绚丽,这都不是设计数据可视化的初衷。诚然,我们在持续地并且永不满足地追求数据之美。但最佳的平衡点在于,用合适的数据可视化开阐释恰到好处的信息和知识的价值之美。
• 只用有关联能传达重要信息的且为你的受众所需要的图形。
•无需填满页面的所有空白——太多杂乱的内容只会干扰对重要信息的接收,会让人太难记住,又太容易忽略。
• 恰当运用色彩,增加信息深度。同时要注意有些色彩具备潜在含义。举例来说,红色被认为是代表警告或危险的颜色。适合预警额。
• 不要使用太多不同类的图表、表格和图形。如果需要对比各种图表,要确保你阐述数据时使用的是同类的图表,这样才能便于互相比较。
6.在恰当处备注文字说明
文字说明有助于用语言解释数据,并能在情境化图表的同时增加内容的深度。数字和表格或许仅能提供快照,而文字说明则让人对关键处了解更多,加以评论并强调其内涵。引导观看者去思考图形的主题,而不是方法论、图形设计、图形生成或其他东西。
• 避免歪曲数据原本的意图。
• 让庞大的数据集连贯一致。
• 吸引读者将不同的数据片段进行比对和比较,突出重点和优劣。
• 主旨要相当明确:描述、挖掘、作表、可视化自我解读。
B. 教育数据可视化四大特征
把庞杂的大数据直观的展现到决策的面前,才能更加节省时间,使工作变得更加高效,利用数据更好的分析用户,针对性的为用户提供服务,增加数据背后与用户的互动性,在数据爆炸增长时代,只有很好的把握时效,才能更好敏锐的掌握机遇。
对于数据可视化最有代表的场景应用之一,不得不提的就是大屏了。其中典型的就双十一购物狂欢节采用实时数据大屏,带给观众更加准确、震撼和清晰的体验。
(2)如何平衡数据可视化的美感和实用扩展阅读:
注意事项:
数据可视化只要能够做到简单、充实、高效、兼具美感,这样的就是数据可视化。成功的可视化,虽表面简单却富含深意,可以让观察者一眼就能洞察事实并产生新的理解,管理者能够沿着规划的可视化路径能够迅速地找到和发现决策之道。
一份数据分析报告或者解释清楚一个问题,很少是单一一个的图表能够完成的,都需要多个指标或者同一指标的不同维度相互配合佐证分析结论。而美感则分为两个层次,第一层是整体协调美,没有多余元素,图表中的坐标轴、形状、线条、字体、标签、标题排版等元素是经过合理安排的。
C. 信息可视化整理
无论数据总量和复杂程度如何,数据间的关系大多可分为三类: 比较 / 构成 / 分布&联系。
基于分类 / 时间的数据对比,通常需用到比较型图表。 比较条目较少时 ,如5个地区收件量的对比,可选用 柱状图 表示。
条形图 当条目较多, 如大于12 条 ,移动端上的柱状图会显得拥挤不堪,更适合用 条形图 。 一般数据条目不超过 30 条 ,否则易带来视觉和记忆负担。 柱形图还有许多丰富的应用。例如堆积柱形图,瀑布图,横向条形图,横轴正负图等。
看趋势 – 折线图 当X轴为 连续数值 (如时间)且 注重变化趋势 时,则适用折线图。
扩大差异 – 南丁格尔玫瑰图 。由于扇形的半径和面积是平方的关系,南丁格尔玫瑰图会将数值之间的差异放大, 适合对比大小相近的数值 。玫瑰图也适于表示 周期 / 时间 概念,比如星期、月份。依然建议 数据量不超过 30 条 ,超出可考虑条形图。
当 比较正反两类 甚至更多维度的数据时,可试尝试双向条形图。用颜色区分大区,空心/实心区分收件量和派件量, 既能整体比较大区,又能详细对比地区的情况 。
打怪升级,再加点难度。 在双向图上再增加一个维度 ,如下表,比较 5 个地区的利润及相应的收入和成本。请先思考一下,再下滑看推荐图表。
通过图形一眼就能看出深圳区的利润低于广州区,即使它的收入高于广州区,但成本相对来说高于广州区。
目标达成 – 子弹图 考察指标的达成情况,如 收入达标情况及所处区间 (优、良、差)。
子弹图,因为像子弹射后带出的轨道。相较于仪表盘,它能够在狭小的空间中表达丰富的数据信息,在信息传递上有更大的效能优势。
若还要比较4个季度的收入情况,只需用不同颜色区分。如下图,一眼便知第二季度表现较好,而第一季度则不佳。
性能 – 雷达图。多维的性能数据 ,如综合评价,常用雷达图表示。 在游戏中看到它比较多 。 它在商务、财务领域应用较大,适合用在固定的框架内表达某种已知的结果。常见于经营状况,财务健康程度。
指标得分接近圆心,说明处于较差状态 ,应分析改进; 指标得分接近外边线,说明处于理想状态 。 比如我对企业财务进行分析,划分出六大类:销售、市场、研发、客服、技术、管理。通过雷达图绘制出预算和实际开销的维度对比 ,会很清晰。如下图:
以上就是“比较”类的常用图表,归纳如下:
一个整体被分成几个部分。这类情况会用到构成型图表 ,如五大区的收件量占比、公司利润的来源构成等。
单层 – 饼状图
第1关中,对比5个地区的收件量时用到了柱状图。若看 占比情况 ,饼状图更合适。饼图是有缺陷的,它擅长表达某一占比较大的类别。 但是不擅长对比。30%和35%在饼图上凭肉眼是难以分辨出区别的 。当 类别过多,也不适宜在饼图上表达 。
如果变成 17 个地区,会怎样?饼图分类一般 不超过 9 个 ,超过建议用条形图展示。
除饼图外, 环形图(甜甜圈图)亦可表示占比,其差异是将饼图的中间区域挖空 ,在 空心区域显示文本信息 ,比如标题,优势是其 空间利用率更高 。
分层 – 环形图、旭日图
对于管理层而言,需先把握大局和重点。比如大区负责人需一眼看到重点地区及重点分部的情况(如下图),如何展示?
这个叫旭日图,逐层下钻看数据,大区的重点地区及相应分部的构成情况一目了然。
累计趋势 – 堆叠面积图
看数值构成随时间变化的案例:第一大区(包含四个重点地区)近 四年收入构成的趋势 要如何可视化?
推荐方案是 堆叠面积图,可以展现分量(地区)对于总量(大区)的贡献 ,并 显示总量(大区)的变化过程 。需要说明的是,地区收入的起点并非从 y=0 开始,而是在下面的地区基础上逐层叠加,最后组成一个整体。
面积图最佳设计指南:波动较大的类别放在最上面、使用透明色、不要超过4个类别,y轴从0开始,不要用面积图展示离散数据,只有连续数据有中间值。
累计比较 – 堆叠柱状图
如果将上图X轴的标签文字(即年份)和图例(即地区)互换(如下图A),用来看 每个地区近四年的收入构成 ,用哪个图更合适?
堆叠面积图 A 方案和堆叠柱状图 B 方案都可以表现累加值。差别在于, 堆叠面积图的 x 轴是连续数据(如时间),堆叠柱状图的 x 轴是分类数据 。此案例中的 x 轴是非连续的分类数据,因此用 B 方案更适合。
累计增减 – 瀑布图
若想表达两个数据点间数量的演变过程,可使用瀑布图。 开始的一个值,在经过不断的加减后,得到一个值 。瀑布图将这个过程图示化,常用来展现财务分析中的收支情况。
通过分布 & 联系型图表能看到数据的分布情况,进而找到某些联系, 如相关性、异常值和数据集群 。
两个变量 – 散点图
仍以业务为例,下图为全国网点的单票成本/收入分布情况。
单单这样看,可能看不出什么,如果加两条平均线就不一样了。
加了平均线,就知道哪些网点高于平均线,哪些低于平均线。但网点那么多, 总不能逐个点击查看是哪个大区的 , 给散点加上颜色后 ,就很有意义了。
通过此图,可以看出哪些大区单票利润较低,急需提升,比如 广泛聚集于右下角的第四大区,单票收入低于平均线,单票成本却高于平均线 。
三个变量 – 气泡图
大家都知道,网点 总利润除了和单票利润有关,还和体量(即收件量)有关 ,用散点的 面积大小 表示收件量,就变成了气泡图。
一切和空间属性有关的分析都可以用到地理图 。比如 各地区销量 ,或者 某商业区域店铺密集度 等。气泡图与地图结合可演变为热力图。通过热力图,能看到哪些网点收派件量较多,需进行资源调配。
地理图一定需要用到 坐标维度 。可以是 经纬度 、也可以是 地域名称 (上海市、北京市)。坐标 粒度即能细到具体某条街道 ,也能宽到 世界各国范围 。POI是很重要的要素。POI是“Point of Information”的缩写,可以翻译成信息点,每个POI包含四方面信息,名称、类别、经度纬度、附近的酒店饭店商铺等信息。借助POI,才能按地理维度展现数据
最佳设计指南:一、使用细的地图轮廓线;选择合适的配色;少用填充图案;选择合适的数据区间。
用户行为分析,将浏览、点击、访问页面的操作以高亮的可视化形式表现。下图就是用户在Google搜索结果的点击行为。
总结:当我们拿到数据后,先提炼关键信息, 明确数据关系及主题 , 再选择合适的图表进行可视化 。
好的可视化是会讲故事的,它向我们揭示了数据背后的规律。对可视化的使用认知或许来源于下面这张图。虽然结构清晰,但它只针对Excel图表,不够丰富。
数据分析中经常会提及维度。维度是观察数据的角度和对数据的描述。 我们可以说地区是一种维度,这个维度包含上海北京这些城市。也可以认为销售额是一个维度,里面有各类销售数据。维度可以用时间、数值表示,也可以用文本,文本常作为类别。 数据分析的本质是各种维度的组合
维度主要是三大类的数据结构:文本、时间、数值。地区的上海、北京就是文本维度(也可以称为类别维度),销售额度就是数值维度,时间就是世界
数值维度可以通过其他维度加工计算得出,例如按地区维度,count出有多少是上海的,有多少是北京的。维度可以互相转换。比如 年龄原本是数值型的维度,但是可以通过对年龄的划分,将其分类为小孩、青年、老年三个年龄段,此时就转换为文本维度。
1.箱线图
箱线图一般人了解的不多, 它能准确地反映数据维度的离散(最大数、最小数、中位数、四分数)情况。凡是离散的数据都适用箱线图。
下图就是箱线图的典型应用。线的上下两端表示某组数据的最大值和最小值。箱的上下两端表示这组数据中排在前25%位置和75%位置的数值。箱中间的横线表示中位数。
2.关系图
展现 事物相关性和关联性的图表 ,比如 社交关系链、品牌传播、或者某种信息的流动 。
有一条微博,现在想研究它的传播链:它是经由哪几个大V分享扩散开来,大V前又有谁分享过等,以此为基础可以绘制出一幅发散的网状图,分析病毒营销的过程。关系图依赖大量的数据,它本身没有维度的概念。
3.矩形树图
上文说过, 柱形图不适合表达过多类目 (比如上百)的数据,那应该怎么办? 矩形树图出现了。它直观地以面积表示数值,以颜色表示类目 。
下图中 各颜色系代表各个类目维度,类目维度下又有多个二级类目 。如果用柱形图表达,简直是灾难。用矩形树图则轻轻松松。
电子商务、产品销售等涉及大量品类的分析,都可以用到矩形树图。
4.桑基图
比较冷门的图表,它常表示信息的变化和流动状态。
5.0 漏斗图
大名鼎鼎的转化率可视化 ,它 适用在固定流程的转化分析 ,你也可以认为它是 桑基图的简化版。 转化率也可以用几组数字表示,不一定做成漏斗图。
可读性**
图表的 首要功能是解释 ,而不是设计,尤其大部分图表都会落入到 过度设计 的陷阱。
客观性
数据的解读因为每个人的观点和视角不同,可以呈现诸多的结果。这也是我们常说统计学会撒谎的原因。
下图是一张销售额柱形图,看来销售额没有啥特大变化嘛。
换另外一种图表展示。就看到了变化的增长趋势。
实际上两张图表的数据没有任何差异,为什么呢? 区别只在坐标轴。第一张图的Y坐标轴起始为0,第二张图起始是2.45 。第二张是截取了部分的柱形图。
统一性
如果图表整体颜色是冷色调,那么就不要再加入暖色。
如果图表文字是雅黑,就不要再加入宋体。
如果某地区数据,用了柱形图对比,其他地区也遵循柱形图样式。
如果某图表,女性使用红色,男性使用蓝色,那么这一规范应该在所有图表体现。除了颜色,其他设计元素同理。
如果有多张图表,图表元素应该统一,如标题、坐标轴刻度、坐标轴位置等。
用户为啥会有“将数据转化成图表”的需求?
最终的答案一定是回归到 企业管理的“第一性原理”——开源节流 。企业需要 数据去分析如何才能节省更多钱,如何才能赚更多钱。 未来的 BI 的产品不能将自己定位为“工具”,而是应该定位为“服务”。
1.0 从流程来看,探索性可视化是这样的:
此类可视化集中在图表的微观功能上 ,像 辅助线、预警、各种图表类型 等。
2.0 解释性可视化需求
一般集中在完成了数据探索,并且 形成一定数据洞察后的 story-telling 场景 。大家在网上看到的一些“ 一张图搞懂 XXX ”、“一张图了解 XXX”就属于解释性可视化 。
此类集中在整体的图表可视化上,比如将多个图表组合起来, 制作成一份报告或者故事版,所以会提供类似标题编辑器、排版编辑器等功能 。目前市面上的 BI 产品,像网易有数、BDP、Tableau、PowerBI 都是采取这种模式
1. 这种偏业务型的产品框架,并不太适合国内市场 。
因为这类产品面向的用户基本上是专业用户(数据分析师),而忽略了一个事实—— 大部分中国企业并没有设立专门的数据分析岗位 。有能力配备数据分析师的企业一般都是中大型企业,他们付费能力可能比较强,但是也意味着用户量会较少。
专业用户对应的是数据分析师,而 半专业用户则对应的是类似财务、销售、HR 等,在业务上专业但数据分析上不专业的用户。这类用户的 日常工作一般集中在解释性可视化上面,比如年终总结、年度规划、每月汇报 中都需要利用到数据可视化。这类用户的流程是这样的:
[图片上传失败...(image-e6e0b4-1556103840929)]
用户导入数据,无需太复杂的操作,即可直接生成图表。 存在问题:
可视化的理解: 信息可视化就是用图形正确的表现复杂的信息和逻辑关系 ,
•通过图片特有的美观和趣味性,吸引读者 •通过最优表现形式,使内容更易懂
•拉近读者与产品的距离,提升品牌认知度
作品一:安全产品首页展示
创作灵感:从需求文档中看到这些子产品名字有御前卫、八卦阵、御城河……当时就觉得非常有意思,脑海中立刻浮现出一个古城的画面,古城周围有士兵、有八卦 阵、有御城河等。跟视觉设计师表达这个想法后大家一拍即合,最终产出了这个方案。 中间的城楼最开始是红色的,有点太抢眼,为了避免喧宾夺主又体现出数据被 保护的感觉,就把它改成了这种半透明的、很数据化的虚拟感觉 。
作品二:产品结构图
创作灵感:通过竞品分析发现国内外同行在这方面都非常下功夫,所以我们也要力求用一张图来把产品结构和关系描述清楚。下篇文章会讲具体的设计过程。
作品三:使用流程示意图
创作灵感:产品经理给出的这个图很严谨,但是对于用户来说理解起来比较困难,因此先用线框图把它简化为单向的流程图,但这样又不够美观和直观。心灵手巧的视觉设计师经过图形的美化,巧妙解决了这个问题。
修改中(局部):
改良后:
作品四:方案描述示意图
也是先梳理信息逻辑,用更易懂的方式去表现,再通过视觉设计师美化。
改良图:
把一件事情做好,首先要知道做好的标准是什么。把这些失败的作品放到一起,就可以大概得出失败的原因是什么,而好的标准又是什么。
[图片上传失败...(image-cf4898-1556103840928)]
从表现形式的角度“信息图表”作为视觉工具应包括以下六类:图表、图解、图形、表格、地图、列表。
按照形式特点我们常把图表分为关系流程图、叙事插图型、树型结构图、时间分布类及空间解构类五种类型。
1、关系流程类图表
2、叙事插图型图表
叙事性图表就是强调时间维度,并随着时间的推移,信息也不断有变化的图表。
3、树状结构示意图
把繁复的数据通过分支梳理的方式表达清楚。运用分组,每组再次分类的主体框架表示主从结构。
4、时间表述类示意图
时间表述类示意图只要以时间轴为中心加入文字数据即可。从设计的角度来看,将主题融入图形设计中,挑选重要事件点解读,就可以使画面精美,加深理解力度。
5、空间结构类示意图
运用设计语言把繁杂结构模型化、虚拟化是空间结构示意图存在的意义
这个流程需要协作完成, 数据需要筛选和整理 ,精准是首要条件 , 其次是梳理。找出出主线逻辑 ,筛选次要内容从而进行精心的设计。
1、基础图形创意
柱状图和饼状图是最常用的两种基础图形,但是简单的几何形态很难给人设计感。 对基础图形的创意来突出设计主题 ,就可以取得一举多得、事半功倍的效果
上面图片中左右的内容是完全一致的,但右图即使读者不详细关注也可心领神会。
2、高吸引度与视觉亮点
从传统网页到社交微博,用户对信息的浏览速度也越来越快,高吸引度便是最宝贵的财富点。
3、画面简洁明了
4.象征图示
在设计的上要注重保持风格的统一,这样才能让人视觉连贯、赏心悦目。
1、饼图顺序不当
饼图是一种非常简单的可视化工具,但他们却常常过于复杂。份额应该直观排序,而且不要超过5个细分。有两种排序方法都可以让你的读者迅速抓取最多的重要信息
方法一:将份额最大的那部分放在12点方向,逆时针放置第二大份额的部分,以此类推。
方法二: 最大部分放在12点,然后顺时针放置
2、在线状图中使用虚线
虚线会让人分心,而是用实线搭配合适的颜色更容易彼此区分
3、数据摆放不直观
你的内容应该符合逻辑并于直观的方式引导读者阅读数据。对类目进行按字母,次数或数值大小进行排序
4、数据模糊化
确保数据不会因为设计而丢失或被覆盖。例如在面积图中使用透明效果来确保用户可以看到全部数据
5、耗费读者更多的精力
要通过辅助的图形元素来使数据更易于理解,比如在散点图中增加趋势线
6、错误呈现数据
确保任何呈现都是准确的,比如,气泡图的大小应该跟数值一样,不要随便标注
7、在热图中使用不同颜色
一些颜色比其他颜色突出,赋予了数据不必要的重元素。反而你应该使用单一颜色,然后通过颜色的深浅来表达
8、柱状过宽或过窄
柱子与柱子之间的间隔最好调整为宽的1/2
9、数据对比困难
对比是呈现差异的有效方式,但如果你的读者不易对比时,效果就大打折扣了。确保数据的呈现方式一致,可以让你的读者对比
10、使用三维图
尽管这些图看来让人振奋,但3D图也容易分散预期和扰乱数据,坚持2D是王道
数值可视化的本质就是用各种视觉属性来表达数据值的大小。视觉属性有这么几类:位置、长短、面积、颜色。对应视觉设计的点,线、面和色值。
其可视化的核心思想在于根据上下文用拟物的方式,将其与我们现世界中数值的事物联系在一起。
如果是奔跑的速度15km/h,那么可以画一个运动员跑步的图来表达这个数字。如果是奔跑的速度70km/h,那么就可以画一只猎豹奔跑,通过模糊的背景来表达奔跑的速度快。如果要描述山的高度5km,就可以画以座耸入云霄的山,给人一种高山的直观形象,更多的创意设计都可以围绕想象展开
汽车行驶的速度,分为慢速、中等和超速,如下左图所示。在表达评价信息时,你需要根据背景 展开联想 。比如说:降水量50毫米,我们可能想象到的就是用一个试管接了50毫米深的水。
一维表格如下图所示,数据表格中只有一行或者一列数据。我们需要对数据可视化的目标进行分析,跟进目标可将数据分为以下几类:
•强调绝对数值的数据;
•强调趋势的数据;
•百分比数据;
•不同类型的数据。
3.1.1 柱状图
收入10000元的就是收入5000元的2倍,GDP一万亿就是五千亿的两倍,这种数据称之为等比数据。柱状图的阅读者一般视觉会被柱子本身所吸引,不会去注意纵轴的起点,用户往往会默认柱子的长度代表绝对数值的大小。所以柱状图的纵轴的起点必须从零开始。
3.1.2 直方图
直方图数据本质的区别在于表达 连续的区间上数量的分布 。统计学中,直方图的纵轴要求是计数数据,也就是说,直方图是用于统计某个区间内的对象个数。
3.1.3 柱状图变式:条形图
条形图还有一个很大的排版优势,能将文字和条形在一侧显示,能够对分类附加说明。在中国,如果不是因为排版的原因,请慎用这种横向的条形图。
3.1.4 柱状图变式:计数条形图
3.1.5 柱状图变式:径向柱状图、径向条形图、螺旋图
为了适应排版的区域,或者增加图形的趣味性,会对柱形图进行扭曲变形。
3.1.6 柱形图变式:用拟物代替柱子
在平面设计,海报宣传页面中,一般会添加拟物的元素,使得数据的表达更加生动。其 基本的思路都是围绕着数据主体展开联想,用拟物的对象代替柱子 。
示例1 :如果描述的是足球相关的内容,那么可以用踢球的形象代替柱子。
示例2 :如果描述的是星体相关的内容,那么可以用星体的形象代替柱子。
示例3 :如果描述的是男女差异,那么可以用男女的形象代替柱子。
示例4 :如果是抽烟相关的数据,正好用烟头的形状代替柱子。
示例5 :如果是山的高度,那么可以用山的形态。
3.1.7 柱形图变式:按某些维度展开重组设计
上一节中,用拟物代替柱子的思路仍然是在柱状图的框架下的。但是很多时候,甚至可以抛开柱状图的束缚,根据关键词展开联想。在联想的过程中,我们只需要记住第一章中提到的数据可视化的本质:通过位置、长短、大小、颜色四个视觉元素来表示数据大小。
示例2 :城市和省份PM2.5值(假设数据)
这种数据只能以地点为关键词展开,以地图的方式呈现 。
PM2.5是一个没有形象的概念,所以可视化的时候,不太可能在PM2.5上面展开。 那么这种数据只能以地点为关键词展开,以地图的方式呈现 。
省份在地图上本身就是一个形状大小固定的面,可以通过颜色热力图来表示数值(下图,左)。
示例3 :各网站访问量
例4 :迁徙地图
单个城市的迁徙图的数据原型仍然是一维数组。以地图为维度展开设计时,需要表达的是各个城市与北京的连线。连线的长短信息已经被城市到北京的距离所用,于是只能用连线的颜色来表示数值。
3.2 强调趋势的数据
3.2.2 折线图的变式:曲线图
3.2.3 折线图的变式:均线图
3.2.4 折线图的变式:面积图
3.2.5 折线图的变式:股指走势图
一般来说,百分比的数据使用饼图(或环形图)的方式表达,这是最常规的。
环形图与饼图不同点在于环形图可以将主题与图更好地融合。
3.3.2 饼图变式:将饼形转化成对象拟物形态。
示例一 :如果是描述人体的成分,那么可视化可以围绕人形展开,将饼的形状变成人的形状。
示例二 :如果你想描述各类行业人群占比,那么你可以考虑画出100个人,各类行业的人用不用样式的图形,如左下图所示;而当你想描述各类枪杀案件枪支的来源,下右图所示。
STEP1:确定表意正确
“正确”是信息图最基本的要求,所以这里首先要确保信息图的内容是正确的。
对于业务比较复杂难理解的产品,可以让产品经理先根据自己的理解画一个图,设计师和产品经理进行沟通,确认双方的理解是一致的。
《淘宝技术这十年》里有一句话说的好“好的架构图充满美感”。淘宝工程师用十年的时间证明了这件事。而其实不仅是技术架构图,好的流程图、结构图、信息图 等都充满美感。
怎样优化信息图的表达形式呢?如果是一个逻辑比较复杂的结构图,可以这样:
虽然逻辑没有错误,但是箭头有交叉,看起来不美