导航:首页 > 数据处理 > 数据库索引怎么用

数据库索引怎么用

发布时间:2022-01-25 17:02:35

Ⅰ 如何正确使用数据库索引

问题补充:能不能具体点,新建一个索引就可以了吗
基本上可以这么说,不过你也可以修改索引。
记住:
索引其实关键目的是为了加快检索速度而建立的,所以,怎么用索引是数据库系统本身的事情,作为数据库设计或使用者,设计并创建好索引然后体验加上索引后的查询变快的感觉就行了。所以,索引怎么用就变为了“怎么创建合适的索引”
以下回答是否符合你的要求?你还有什么问题?
第一次回答:
一、索引是什么
索引是与表或视图关联的磁盘上结构,可以加快从表或视图中检索行的速度。索引包含由表或视图中的一列或多列生成的键。这些键存储在一个结构(B 树)中,使 SQL Server 可以快速有效地查找与键值关联的行。
表或视图可以包含以下类型的索引:
* 聚集
o 聚集索引根据数据行的键值在表或视图中排序和存储这些数据行。索引定义中包含聚集索引列。每个表只能有一个聚集索引,因为数据行本身只能按一个顺序排序。
o 只有当表包含聚集索引时,表中的数据行才按排序顺序存储。如果表具有聚集索引,则该表称为聚集表。如果表没有聚集索引,则其数据行存储在一个称为堆的无序结构中。
* 非聚集
o 非聚集索引具有独立于数据行的结构。非聚集索引包含非聚集索引键值,并且每个键值项都有指向包含该键值的数据行的指针。
o 从非聚集索引中的索引行指向数据行的指针称为行定位器。行定位器的结构取决于数据页是存储在堆中还是聚集表中。对于堆,行定位器是指向行的指针。对于聚集表,行定位器是聚集索引键。
o 您可以向非聚集索引的叶级添加非键列以跳过现有的索引键限制(900 字节和 16 键列),并执行完整范围内的索引查询。
聚集索引和非聚集索引都可以是唯一的。这意味着任何两行都不能有相同的索引键值。另外,索引也可以不是唯一的,即多行可以共享同一键值。
每当修改了表数据后,都会自动维护表或视图的索引。
索引和约束
对表列定义了 PRIMARY KEY 约束和 UNIQUE 约束时,会自动创建索引。例如,如果创建了表并将一个特定列标识为主键,则 数据库引擎自动对该列创建 PRIMARY KEY 约束和索引。有关详细信息,请参阅创建索引(数据库引擎)。
二、索引有什么用
与书中的索引一样,数据库中的索引使您可以快速找到表或索引视图中的特定信息。索引包含从表或视图中一个或多个列生成的键,以及映射到指定数据的存储位置的指针。通过创建设计良好的索引以支持查询,可以显着提高数据库查询和应用程序的性能。索引可以减少为返回查询结果集而必须读取的数据量。索引还可以强制表中的行具有唯一性,从而确保表数据的数据完整性。
设计良好的索引可以减少磁盘 I/O 操作,并且消耗的系统资源也较少,从而可以提高查询性能。对于包含 SELECT、UPDATE、DELETE 或 MERGE 语句的各种查询,索引会很有用。例如,在 AdventureWorks 数据库中执行的查询 SELECT Title, HireDate FROM HumanResources.Employee WHERE EmployeeID = 250。执行此查询时,查询优化器评估可用于检索数据的每个方法,然后选择最有效的方法。可能采用的方法包括扫描表和扫描一个或多个索引(如果有)。
扫描表时,查询优化器读取表中的所有行,并提取满足查询条件的行。扫描表会有许多磁盘 I/O 操作,并占用大量资源。但是,如果查询的结果集是占表中较高百分比的行,扫描表会是最为有效的方法。
查询优化器使用索引时,搜索索引键列,查找到查询所需行的存储位置,然后从该位置提取匹配行。通常,搜索索引比搜索表要快很多,因为索引与表不同,一般每行包含的列非常少,且行遵循排序顺序。
查询优化器在执行查询时通常会选择最有效的方法。但如果没有索引,则查询优化器必须扫描表。您的任务是设计并创建最适合您的环境的索引,以便查询优化器可以从多个有效的索引中选择。SQL Server 提供的数据库引擎优化顾问可以帮助分析数据库环境并选择适当的索引。
三、索引怎么用
索引其实关键目的是为了加快检索速度而建立的,所以,怎么用索引是数据库系统本身的事情,作为数据库设计或使用者,设计并创建好索引然后体验加上索引后的查询变快的感觉就行了。所以,索引怎么用就变为了“怎么创建合适的索引”,以下说明这个问题:
索引设计不佳和缺少索引是提高数据库和应用程序性能的主要障碍。设计高效的索引对于获得良好的数据库和应用程序性能极为重要。为数据库及其工作负荷选择正确的索引是一项需要在查询速度与更新所需开销之间取得平衡的复杂任务。如果索引较窄,或者说索引关键字中只有很少的几列,则需要的磁盘空间和维护开销都较少。而另一方面,宽索引可覆盖更多的查询。您可能需要试验若干不同的设计,才能找到最有效的索引。可以添加、修改和删除索引而不影响数据库架构或应用程序设计。因此,应试验多个不同的索引而无需犹豫。
SQL Server 中的查询优化器可在大多数情况下可靠地选择最高效的索引。总体索引设计策略应为查询优化器提供可供选择的多个索引,并依赖查询优化器做出正确的决定。这在多种情况下可减少分析时间并获得良好的性能。若要查看查询优化器对特定查询使用的索引,请在 SQL Server Management Studio 中的“查询”菜单上选择“包括实际的执行计划”。
不要总是将索引的使用等同于良好的性能,或者将良好的性能等同于索引的高效使用。如果只要使用索引就能获得最佳性能,那查询优化器的工作就简单了。但事实上,不正确的索引选择并不能获得最佳性能。因此,查询优化器的任务是只在索引或索引组合能提高性能时才选择它,而在索引检索有碍性能时则避免使用它。
建议的索引设计策略包括以下任务:
1. 了解数据库本身的特征。例如,它是频繁修改数据的联机事务处理 (OLTP) 数据库,还是主要包含只读数据的决策支持系统 (DSS) 或数据仓库 (OLAP) 数据库?
2. 了解最常用的查询的特征。例如,了解到最常用的查询联接两个或多个表将有助于决定要使用的最佳索引类型。
3. 了解查询中使用的列的特征。例如,某个索引对于含有整数数据类型同时还是唯一的或非空的列是理想索引。筛选索引适用于具有定义完善的数据子集的列。
4. 确定哪些索引选项可在创建或维护索引时提高性能。例如,对现有某个大型表创建聚集索引将会受益于 ONLINE 索引选项。ONLINE 选项允许在创建索引或重新生成索引时继续对基础数据执行并发活动。
5. 确定索引的最佳存储位置。非聚集索引可以与基础表存储在同一个文件组中,也可以存储在不同的文件组中。索引的存储位置可通过提高磁盘 I/O 性能来提高查询性能。例如,将非聚集索引存储在表文件组所在磁盘以外的某个磁盘上的一个文件组中可以提高性能,因为可以同时读取多个磁盘。
或者,聚集索引和非聚集索引也可以使用跨越多个文件组的分区方案。在维护整个集合的完整性时,使用分区可以快速而有效地访问或管理数据子集,从而使大型表或索引更易于管理。有关详细信息,请参阅已分区表和已分区索引。在考虑分区时,应确定是否应对齐索引,即,是按实质上与表相同的方式进行分区,还是单独分区。
# 设计索引。
索引设计是一项关键任务。索引设计包括确定要使用的列,选择索引类型(例如聚集或非聚集),选择适当的索引选项,以及确定文件组或分区方案布置。
# 确定最佳的创建方法。按照以下方法创建索引:
* 使用 CREATE TABLE 或 ALTER TABLE 对列定义 PRIMARY KEY 或 UNIQUE 约束
SQL Server 数据库引擎自动创建唯一索引来强制 PRIMARY KEY 或 UNIQUE 约束的唯一性要求。默认情况下,创建的唯一聚集索引可以强制 PRIMARY KEY 约束,除非表中已存在聚集索引或指定了唯一的非聚集索引。默认情况下,创建的唯一非聚集索引可以强制 UNIQUE 约束,除非已明确指定唯一的聚集索引且表中不存在聚集索引。
还可以指定索引选项和索引位置、文件组或分区方案。
创建为 PRIMARY KEY 或 UNIQUE 约束的一部分的索引将自动给定与约束名称相同的名称。
* 使用 CREATE INDEX 语句或 SQL Server Management Studio 对象资源管理器中的“新建索引”对话框创建独立于约束的索引
必须指定索引的名称、表以及应用该索引的列。还可以指定索引选项和索引位置、文件组或分区方案。默认情况下,如果未指定聚集或唯一选项,将创建非聚集的非唯一索引。若要创建筛选索引,请使用可选的 WHERE 子句。
# 创建索引。
要考虑的一个重要因素是对空表还是对包含数据的表创建索引。对空表创建索引在创建索引时不会对性能产生任何影响,而向表中添加数据时,会对性能产生影响。
对大型表创建索引时应仔细计划,这样才不会影响数据库性能。对大型表创建索引的首选方法是先创建聚集索引,然后创建任何非聚集索引。在对现有表创建索引时,请考虑将 ONLINE 选项设置为 ON。该选项设置为 ON 时,将不持有长期表锁以继续对基础表的查询或更新。

Ⅱ sql中索引有什么用

主要作用就是提高检索速度
数据库表中的时间字段是否可以建立索引?
可以建立索引的;至于建立聚集索引或者是非聚集索引,那要看你这个时间字段的具体情况以及使用或变更频繁程度。
一般来说,适合建立聚集索引的要求:“既不能绝大多数都相同,又不能只有极少数相同”的规则。
先说说一个误区:有人认为:只要建立索引就能显着提高查询速度。这个想法是很错误的。建立非聚集索引,确实,一般情况下可以提高速度,但是一般并不会达到你想要的速度。只有在适当的列建立适当的(聚集)索引,才能达到满意的效果。
下面的表总结了何时使用聚集索引或非聚集索引(很重要)。
动作描述
使用聚集索引
使用非聚集索引
列经常被分组排序


返回某范围内的数据

不应
一个或极少不同值
不应
不应
小数目的不同值

不应
大数目的不同值
不应

频繁更新的列
不应

外键列


主键列


频繁修改索引列
不应
别的就要看你的理解了。

Ⅲ sql server索引怎么用

1、打开 SQL Server Management Studio并连接到数据库引擎数据库。

2、在“对象资源管理器”窗格中展开“数据库”节点。再打开“数据库”节点下的“表”节点,再展开dbo.格式的表。

3、右击“索引”选项,在弹出的快捷菜单中选择“新建索引”命令。

4、在打开的“新建索引”对话框中,设置索引的名称,索引类型为“聚集”, 然后单击“添加”按钮。

5、在打开的 “从dbo.表 中选择列” 对话框中选择要添加到索引键的表列。 然后点击“确定”按钮。

6、选择索引键后的“新建索引”对话框中,设置索引列的排序为“升序/降序”,设置完成后,单击“新建索引”对话框的“确定”按钮,这样就为表创建了索引。

Ⅳ SQL中索引是什么意思怎么用

索引主要用来提升数据检索速度,在数据量很大的时候很有用. 索引相当于图书馆的图书目录,你要找本书可以在图书目录上找到这本书在哪个书架第几本,这样明显比到书架去找书要快得多,索引就是这个道理.

Ⅳ mysql数据库,索引是怎么使用的

MySQL支持很多数据类型,选择合适的数据类型存储数据对性能有很大的影响。通常来说,可以遵循以下一些指导原则:
(1)越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。
(2)简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。
(3)尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值。

Ⅵ 请问数据库的索引创建后要怎么用啊

应该建索引的字段:1.经常作为查询条件的字段2.外键3.经常需要排序的字段4.分组排序的字段

应该少建或者不建索引的字段有:1.表记录太少,2.经常需要插入,删除,修改的表,3.表中数据重复且分布平均的字段

一些SQL的写法会限制索引的使用:1.where子句中如果使用in、or、like、!= >,均会导致索引不能正常使用,将">"换成">and=chr(0)";2.使用函数时,该列就不能使用索引。3.比较不匹配数据类型时,该索引将会被忽略。

一些SQL语句优化的写法:1.如果from是双表的查询时,大表放在前面,小表放在后面(基础表)。最后面的表是基础表。(只在基于规则的优化器中有效)2.如果三表查询时,选择交叉表(intersection table)作为基础表.(只在基于规则的优化器中有效)3.写where条件时,有索引字段的判断在前,其它字段的判断在后;如果where条件中用到复合索引,按照索引列在复合索引中出现的顺序来依次写where条件;4.查询数量较大时,使用表连接代替IN,EXISTS,NOT IN,NOT EXISTS等。5.ORACLE采用自下而上的顺序解析WHERE子句,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.

Ⅶ 数据库建立索引怎么利用索引查询

1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。
索引的使用要恰到好处,其使用原则如下:
在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。
在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而 使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量 数据后,删除并重建索引可以提高查询速度。
(1)在下面两条select语句中:
SELECT * FROM table1 WHERE field1<=10000 AND field1>=0;
SELECT * FROM table1 WHERE field1>=0 AND field1<=10000;
如果数据表中的数据field1都>=0,则第一条select语句要比第二条select语句效率高的多,因为第二条select语句的第一个条件耗费了大量的系统资源。
第一个原则:在where子句中应把最具限制性的条件放在最前面。
(2)在下面的select语句中:
SELECT * FROM tab WHERE a=… AND b=… AND c=…;
若有索引index(a,b,c),则where子句中字段的顺序应和索引中字段顺序一致。
第二个原则:where子句中字段的顺序应和索引中字段顺序一致。
——————————————————————————
以下假设在field1上有唯一索引I1,在field2上有非唯一索引I2。
——————————————————————————
(3) SELECT field3,field4 FROM tb WHERE field1='sdf' 快
SELECT * FROM tb WHERE field1='sdf' 慢[/cci]
因为后者在索引扫描后要多一步ROWID表访问。
(4) SELECT field3,field4 FROM tb WHERE field1>='sdf' 快
SELECT field3,field4 FROM tb WHERE field1>'sdf' 慢
因为前者可以迅速定位索引。
(5) SELECT field3,field4 FROM tb WHERE field2 LIKE 'R%' 快
SELECT field3,field4 FROM tb WHERE field2 LIKE '%R' 慢,
因为后者不使用索引。
(6) 使用函数如:
SELECT field3,field4 FROM tb WHERE upper(field2)='RMN'不使用索引。
如果一个表有两万条记录,建议不使用函数;如果一个表有五万条以上记录,严格禁止使用函数!两万条记录以下没有限制。
(7) 空值不在索引中存储,所以
SELECT field3,field4 FROM tb WHERE field2 IS[NOT] NULL不使用索引。
(8) 不等式如
SELECT field3,field4 FROM tb WHERE field2!='TOM'不使用索引。
相似地,
SELECT field3,field4 FROM tb WHERE field2 NOT IN('M','P')不使用索引。
(9) 多列索引,只有当查询中索引首列被用于条件时,索引才能被使用。
(10) MAX,MIN等函数,使用索引。
SELECT max(field2) FROM tb 所以,如果需要对字段取max,min,sum等,应该加索引。
一次只使用一个聚集函数,如:
SELECT “min”=min(field1), “max”=max(field1) FROM tb
不如:SELECT “min”=(SELECT min(field1) FROM tb) , “max”=(SELECT max(field1) FROM tb)
(11) 重复值过多的索引不会被查询优化器使用。而且因为建了索引,修改该字段值时还要修改索引,所以更新该字段的操作比没有索引更慢。
(12) 索引值过大(如在一个char(40)的字段上建索引),会造成大量的I/O开销(甚至会超过表扫描的I/O开销)。因此,尽量使用整数索引。 Sp_estspace可以计算表和索引的开销。
(13) 对于多列索引,ORDER BY的顺序必须和索引的字段顺序一致。
(14) 在sybase中,如果ORDER BY的字段组成一个簇索引,那么无须做ORDER BY。记录的排列顺序是与簇索引一致的。
(15) 多表联结(具体查询方案需要通过测试得到)
where子句中限定条件尽量使用相关联的字段,且尽量把相关联的字段放在前面。
SELECT a.field1,b.field2 FROM a,b WHERE a.field3=b.field3
field3上没有索引的情况下:
对a作全表扫描,结果排序
对b作全表扫描,结果排序
结果合并。
对于很小的表或巨大的表比较合适。
field3上有索引
按照表联结的次序,b为驱动表,a为被驱动表
对b作全表扫描
对a作索引范围扫描
如果匹配,通过a的rowid访问
(16) 避免一对多的join。如:
SELECT tb1.field3,tb1.field4,tb2.field2 FROM tb1,tb2 WHERE tb1.field2=tb2.field2 AND tb1.field2=‘BU1032’ AND tb2.field2= ‘aaa’
不如:
declare @a varchar(80)
SELECT @a=field2 FROM tb2 WHERE field2=‘aaa’
SELECT tb1.field3,tb1.field4,@a FROM tb1 WHERE field2= ‘aaa’
(16) 子查询
用exists/not exists代替in/not in操作
比较:
SELECT a.field1 FROM a WHERE a.field2 IN(SELECT b.field1 FROM b WHERE b.field2=100)
SELECT a.field1 FROM a WHERE EXISTS( SELECT 1 FROM b WHERE a.field2=b.field1 AND b.field2=100)
SELECT field1 FROM a WHERE field1 NOT IN( SELECT field2 FROM b)
SELECT field1 FROM a WHERE NOT EXISTS( SELECT 1 FROM b WHERE b.field2=a.field1)
(17) 主、外键主要用于数据约束,sybase中创建主键时会自动创建索引,外键与索引无关,提高性能必须再建索引。
(18) char类型的字段不建索引比int类型的字段不建索引更糟糕。建索引后性能只稍差一点。
(19) 使用count(*)而不要使用count(column_name),避免使用count(DISTINCT column_name)。
(20) 等号右边尽量不要使用字段名,如:
SELECT * FROM tb WHERE field1 = field3
(21) 避免使用or条件,因为or不使用索引。
2.避免使用order by和group by字句。
因为使用这两个子句会占用大量的临时空间(tempspace),如果一定要使用,可用视图、人工生成临时表的方法来代替。
如果必须使用,先检查memory、tempdb的大小。
测试证明,特别要避免一个查询里既使用join又使用group by,速度会非常慢!
3.尽量少用子查询,特别是相关子查询。因为这样会导致效率下降。
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
4.消除对大型表行数据的顺序存取
在 嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。
比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询 10亿行数据。
避免这种情况的主要方法就是对连接的列进行索引。
例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个 表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。
下面的查询将强迫对orders表执行顺序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3] >“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other COLUMNS
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>“98000”
ORDER BY cust.name
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT cust.name,rcvbles.balance,……other COLUMNS
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>;0
ORDER BY cust.name
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。
7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。

Ⅷ 数据库中的常规索引怎么使用

索引不需要你主动去调用的,一般当数据量比较大时(至少也要上万),可以在经常作为where后面查询的列上面见索引,这样查询速度就会快些!

Ⅸ 在数据表中索引有什么用,怎么建立索引

索引用于快速找出在某个列中有一特定值的行,不使用索引,MySQL必须从第一条记录开始读完整个表,直到找出相关的行,表越大,查询数据所花费的时间就越多。建立索引的操作步骤如下:

1、首先我们打开一个要操作的数据表,如下图所示,我们需要给name字段添加索引。

Ⅹ 关于数据库索引的使用

查询条件中用到的字段才会走索引。 如果select * from stu where name = "test"; 这个就走索引了。当你表里有百万 千万数据的时候,走索引的算法差不多是ln(O)

阅读全文

与数据库索引怎么用相关的资料

热点内容
查专业数据去哪里 浏览:352
累计数据如何筛选 浏览:174
亚运村汽车交易市场怎么走 浏览:903
微信小程序斗地主福券有什么用 浏览:346
陶瓷信息网站哪里找 浏览:192
哪个软件可以修改别人发的信息 浏览:661
代理人怎么吃回扣 浏览:446
人脑能装多少数据 浏览:708
自己开店如何办理会员小程序 浏览:19
上游五氟丙烯产品有哪些 浏览:339
蓬安工商代理需要多少钱 浏览:661
没有下房产证的房屋怎么交易 浏览:844
代理素颜霜哪个牌子好 浏览:585
如何看深股通交易情况 浏览:523
导入的数据哪里找 浏览:580
沈阳发改委菜价和市场菜价哪个贵 浏览:610
马鞍山代理记账多少钱 浏览:127
财付通深交易指什么 浏览:675
基迪奥技术支持如何 浏览:249
保险产品停售带来什么 浏览:64