A. 大数据应该怎么学有哪些要求
“大数据”就是一些把我们需要观察的对象数据化,然后把数据输入计算机,让计算机对这些大量的数据进行分析之后,给出我们一些结论。
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。
北大青鸟中博软件学院大数据毕业答辩
B. 零基础学习大数据怎么学
【导语】如今大数据发展得可谓是如日中天,各行各业对于大数据的需求也是与日俱增,越来越多的决策、建议、规划和报告,都要依靠大数据的支撑,学习大数据成了不少人提升或转行的机会,那么零基础学习大数据怎么学呢?
1、学习大数据我们就要认识大数据,大数据(big
data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。
2、学习有关大数据课程的内容:
第一阶段:Java语言基础(只只需要学习Java的标准版JavaSE就可以了,做大数据不需要很深的Java
技术,当然Java怎么连接数据库还是要知道);
第二阶段:Linux精讲(因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑);
第三阶段:Hadoop生态系统(这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。)
第四阶段:strom实时开发(torm是一个免费并开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流,像Hadoop批量处理大数据一样,Storm可以实时处理数据。Storm简单,可以使用任何编程语言。)
第五阶段:Spark生态体系(它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。);
第六阶段:大数据项目实战(大数据实战项目可以帮助大家对大数据所学知识更加深刻的了解、认识,提高大数据实践技术)。
关于零基础学习大数据怎么学,就给大家介绍到这里了,其实想要学好大数据,成为优秀的大数据工程师,还是需要大家多多进行自我技能提升,多多进行日常问题处理,加油!
C. 大数据怎么学
其实简单的来说,大数据就是通过分析和挖掘全量的非抽样的数据辅助决策。
大数据可以实现的应用可以概括为两个方向,一个是精准化定制,第二个是预测。比如像通过搜索引擎搜索同样的内容,每个人的结果却是大不相同的。再比如精准营销、网络的推广、淘宝的喜欢推荐,或者你到了一个地方,自动给你推荐周边的消费设施等等。
很多新手刚开始会考虑自学大数据,时间安排自由,但是新手如何自学大数据是个相当严峻的问题,看视频学大数据可以吗?可以,但问题的关键在于你要找出优质的大数据视频教程,然后要确保自己在学习中无遗漏,并且最好是伴随着你相应的笔记。
新手自学大数据中,特别注意的是要进行项目练习,大数据在刚接触时会有些新鲜感,但是接下来就是一些乏味感,一味的只看不练,那么学起来更乏味,大数据本身也是门需要大量项目练习巩固知识的专业,不多多进行项目练习,那么很大程度上就等于白学,学不能致用。
新手自学大数据难吗?其实相当有难度,大数据知识学习起来其实还满杂的,既得学大数据基础,又得掌握很多统计学等等的知识,自学大数据一个人的视野也毕竟有限,遇到难题时,想找个人一起商讨如何解决,难,想证明自己所做的数据分析正确全面,但是无人可证。
没有基础的,我是建议去找一个专业的学习去学习,会大大的缩减学习时间以及提高学习效率
D. 初学者如何高效学习大数据技术
大数据相比大家一定都不陌生,很多小伙伴一定也想学习大数据技术,从事这方面的工作。因为近些年大数据是非常火爆的一个行业,之未来的发展前景也被大家所看好,所以也吸引了很多人前来学习大数据技术。
那么,大数据怎么学习比较好呢?
首先,小编认为大家需要做的就是去选择一个比较适合自己的学习方式,目前市面上主要是自学和培训俩种方式。
自学,相对来说是比较适合有一定的编程基础的小伙伴的,并且自律性也要比较强才行,否则是很那坚持学习下去的,很多人都是因为没有自律性导致后期逐渐的放弃学习。
培训,不管是有基础还是零基础的都比较适合,只要想学习都是可以的,但前提是你必须要满足年龄和学历的一个要求才行。
其次,就是在学习的过中应该如何对待,小编这里一共总结了下边几个方面的,希望可以帮助大家。
1、遇到问题一定要及时解决,在解决的过程中先自己试着去解决,如果解决不了就去多问问老师,看看是怎么解决的;
2、多和同学之间进行交流,在学习中有什么疑问和同学多进行交流,这样不仅可以互相帮忙学习,还可以不断体系学习效率;
3、多敲代码,多练习。编程学习主要是动手能力,所以大家一定要多去练习,只有练习之后你才能更好的发现问题并解决。
E. 怎么自学大数据
自学大数据学习路线:(前提:以Java语言为基础)
总共分为四个模块:
大数据基础
大数据框架
大数据项目
其他
第一模块:大数据基础
Java基础:集合,IO流
JVM:重点是项目调优
多线程:理论和项目应用
Linux:最基本的操作
这一个模块的重点是为了面试做准备,个人根据自己的情况去复习,复习的时候理论部分建议看书和博客资料,应用部分建议看视频和Demo调试。
下面分别去详细的介绍一下:
Java基础:集合,IO流
主要是理论部分,可以看书或者博客总结,这一块没什么推荐的,网上很多资料可以找到。
JVM:重点是项目调优
多线程:理论和项目应用
这两块重点要结合到项目中,通过项目中的实际使用,然后反馈到对应的理论基础,这一块建议在B站上看对应的视频。B站”尚硅谷“官网上的视频很详细。
Linux:最基本的操作
这一块有时间,先把《鸟哥的Linux私房菜》这本书看一遍,然后装个Linux系统自己玩玩,对应的最常使用的命令自己敲敲。
如果没时间,就把最常用的命令自己敲敲,网上有对应的总结,自己很容易搜到。一定要自己敲敲。
第二模块:大数据框架
Hadoop:重点学,毕竟大数据是以Hadoop起家的,里面就HDFS,MapReces,YARN三个模块。
Hive:先学会怎么用,当作一个工具来学习。
Spark:重点学,用来替代Hadoop的MapReces的,里面重点有三块:Spark Core,Spark SQL,Spark Streaming。
Flink:我还没学。
Hbase:当作一个工具来学习,先学习怎么用。
Kafka:先学怎么用,其实里面的模块可以先理解成两部分:生产者和消费者。所有的核心都是围绕这两个展开的。
Flume:当作一个工具来学习,先学习怎么用。
Sqoop:当作一个工具来学习,先学习怎么用。
Azkaban:当作一个工具来学习,先学习怎么用。
Scala:这个是一门编程语句,基于Java 而来的,可以工作后在学习。
Zookeeper:当作一个工具来学习,先学习怎么用。
以上的学习视频和资料可以在B站的”尚硅谷“和”若泽大数据“里找到,很详细。资料目前最详细的资料就是各个框架对应的官网。视频里也是对着官网一步一步讲的。官网都是英文的,可以用Google浏览器的翻译插件,翻译成中文后在看。
第三模块:大数据项目
B站的”尚硅谷“和”若泽大数据“。
第四模块:其他
分布式:知道最基本的概念,有个分布式项目的经验。分布式项目可以在B站的”尚硅谷“里找到。
算法:网上有详细的总结,书:推荐《剑指Offer》和《算法4》,看算法的目的是先掌握实现算法的思路然后才是实现方式。
SQL:主要是调优,网上有很详细的总结。
除此之外:Storm框架不要学了。
很多准备前期都是为了面试,例如:JVM和多线程,SQL调优和算法。这些东西真正使用的过程中千差万别,但核心知识不变,所以面试的时候总是会问,这一块的前期以通过面试为主要点。
学习了差不多了,例如:Hadoop,Hive 和Spark学完了,就去面试面试,通过面试的情况在来调整自己的学习。
F. 怎样学习大数据
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
G. 零基础应该如何学习大数据
首先,学习大数据我们就要认识大数据,大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Veracity(真实性)。
其次,学习有关大数据课程的内容,第一阶段:Java语言基础(只只需要学习Java的标准版JavaSE就可以了,做大数据不需要很深的Java 技术,当然Java怎么连接数据库还是要知道);
第二阶段:Linux精讲(因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑);
第三阶段:Hadoop生态系统(这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。)
第四阶段:strom实时开发(torm是一个免费并开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流,像Hadoop批量处理大数据一样,Storm可以实时处理数据。Storm简单,可以使用任何编程语言。)
第五阶段:Spark生态体系(它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。);
第六阶段:大数据项目实战(大数据实战项目可以帮助大家对大数据所学知识更加深刻的了解、认识,提高大数据实践技术)。
关于零基础应该如何学习大数据,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
H. 学大数据需要什么基础
说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。
I. 想要学习大数据,应该怎么入门
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
J. 大数据怎么学习
第一阶段:大数据技术入门
1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。
2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令操作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用操作,磁盘基本管理命令,内存使用监控命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手操作,将理论付诸实践。
3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。
第二阶段:海量数据高级分析语言
Scala是一门多范式的编程语言,类似于java,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的操作。
第三阶段:海量数据存储分布式存储
1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。
2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际操作才能熟练。
第四阶段:海量数据分析分布式计算
1HadoopMapRece分布式计算:是一种编程模型,用于打过莫数据集的并行运算。
2Hiva数据挖掘:对其进行概要性简介,数据定义,创建,修改,删除等操作。
3Spare分布式计算:Spare是类MapRece的通用并行框架。
第五阶段:考试
1技术前瞻:对全球最新的大数据技术进行简介。
2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数据技能认证书。
上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。