导航:首页 > 数据处理 > 大数据统计和硬辅哪个好

大数据统计和硬辅哪个好

发布时间:2024-11-07 21:00:32

1. 怎样进行大数据的入门级学习

怎样进行大数据的入门级学习?

文 | 郭小贤

数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。

但从狭义上来看,我认为数据科学就是解决三个问题:

1. datapre-processing;(数据预处理)

2. datainterpretation;(数据解读)

3.datamodeling and analysis.(数据建模与分析)

这也就是我们做数据工作的三个大步骤:

1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;

2、我们想看看数据“长什么样”,有什么特点和规律;

3、按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。

这三个步骤未必严谨,每个大步骤下面可能依问题的不同也会有不同的小步骤,但按我这几年的经验来看,按照这个大思路走,数据一般不会做跑偏。

这样看来,数据科学其实就是门复合型的技术,既然是技术就从编程语言谈起吧,为了简练,只说说R和Python。但既然是荐数据科学方面的书,我这里就不提R/Python编程基础之类的书了,直接上跟数据科学相关的。

R programming

如果只是想初步了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:

R inaction:我的R语言大数据101。其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配合上一些辅助材料,如官方发布的R basics(http://cran.r-project.org/doc/contrib/usingR.pdf),stackoverflow上有tag-R的问题集(Newest ‘r’ Questions),遇到复杂的问题可在上面搜索,总会找到解决方案的。这样一来,用这本书拿来入门学习也问题不大。而且这本书作者写得也比较轻松,紧贴实战。

Dataanalysis and graphics using R:使用R语言做数据分析的入门书。这本书的特点也是紧贴实战,没有过多地讲解统计学理论,所以喜欢通过情境应用来学习的人应该会喜欢这本入门书。而且这本书可读性比较强,也就是说哪怕你手头没电脑写不了代码,有事没事拿出这本书翻一翻,也能读得进去。

但如果你先用R来从事实实在在的数据工作,那么上面两本恐怕不够,还需要这些:

Modernapplied statistics with S:这本书里统计学的理论就讲得比较多了,好处就是你可以用一本书既复习了统计学,又学了R语言。(S/Splus和R的关系就类似于Unix和Linux,所以用S教程学习R,一点问题都没有)

Datamanipulation with R:这本书实务性很强,它教给你怎么从不同格式的原始数据文件里读取、清洗、转换、整合成高质量的数据。当然和任何一本注重实战的书一样,本书也有丰富的真实数据或模拟数据供你练习。对于真正从事数据处理工作的人来说,这本书的内容非常重要,因为对于任何研究,一项熟练的数据预处理技能可以帮你节省大量的时间和精力。否则,你的研究总是要等待你的数据。

RGraphics Cookbook:想用R做可视化,就用这本书吧。150多个recipes,足以帮你应付绝大多数类型的数据。以我现在极业余的可视化操作水平来看,R是最容易做出最漂亮的图表的工具了。

Anintroction to statistical learning with application in R:这本书算是着名的the element of statistical learning的姊妹篇,后者更注重统计(机器)学习的模型和算法,而前者所涉及的模型和算法原没有后者全面或深入,但却是用R来学习和应用机器学习的很好的入口。

Ahandbook of statistical analysis using R:这本书内容同样非常扎实,很多统计学的学生就是用这本书来学习用R来进行统计建模的。

Python

Think Python,ThinkStats,Think Bayes:这是AllenB. Downey写的着名的Think X series三大卷。其实是三本精致的小册子,如果想快速地掌握Python在统计方面的操作,好好阅读这三本书,认真做习题,答案链接在书里有。这三本书学通了,就可以上手用Python进行基本的统计建模了。

PythonFor Data Analysis: 作者是pandas的主要开发者,也正是Pandas使Python能够像R一样拥有dataframe的功能,能够处理结构比较复杂的数据。这本书其实analysis讲得不多,说成数据处理应该更合适。掌握了这本书,处理各种糟心的数据就问题不大了。

Introctionto Python for Econometrics, Statistics and DataAnalysis:这本书第一章就告诉你要安装Numpy, Scipy, Matplotlib, Pandas, IPython等等。然后接下来的十好几章就是逐一介绍这几个库该怎么用。很全面,但读起来比较枯燥,可以用来当工具书。

PracticalData Analysis: 这本书挺奇葩,貌似很畅销,但作者把内容安排得东一榔头西一棒子,什么都讲一点,但一个都没讲透。这本书可以作为我们学习数据分析的一个索引,看到哪块内容有意思,就顺着它这个藤去摸更多的瓜。

PythonData Visualization Cookbook: 用Python做可视化的教材肯定不少,我看过的也就这一本,觉得还不错。其实这类书差别都不会很大,咬住一本啃下来就是王道。

Exploratory Data Analysis 和 Data Visualization

Exploratory DataAnalysis:John Tukey写于1977年的经典老教材,是这一领域的开山之作。如今EDA已经是统计学里的重要一支,但当时还是有很多人对他的工作不屑一顾。可他爱数据,坚信数据可以以一种出人意料的方式呈现出来。正是他的努力,让数据可视化成为一门无比迷人的技术。但这本书不推荐阅读了,内容略过时。要想完整地了解EDA,推荐下一本:

ExploratoryData Analysis with MATLAB:这本书虽然标题带了个MATLAB,但实际上内容几乎没怎么讲MATLAB,只是每讲一个方法的时候就列出对应的MATALB函数。这本书的重要之处在于,这是我读过的讲EDA最系统的一本书,除了对visualization有不输于John Tucky的讲解外,对于高维的数据集,通过怎样的方法才能让我们从中找到潜在的pattern,这本书也做了详尽的讲解。全书所以案例都有对应的MATALB代码,而且还提供了GUI(图形用户界面)。所以这本书学起来还是相当轻松愉悦的。

VisualizeThis:中译本叫“鲜活的数据”,作者是个“超级数据迷”,建立了一个叫http://flowingdata.com的网页展示他的数据可视化作品,这本书告诉你该选择什么样的可视化工具,然后告诉你怎样visualize关系型数据、时间序列、空间数据等,最后你就可以用数据讲故事了。如果你只想感受一下数据可视化是个什么,可以直接点开下面这个链接感受下吧!A tour through the visualization zoo(A TourThrough the Visualization Zoo)

Machine Learning & Data Mining

这一块就不多说了,不是因为它不重要,而是因为它太太太重要。所以这一部分就推两本书,都是”世界名着“,都比较难读,需要一点点地啃。这两本书拿下,基本就算是登堂入室了。其实作为机器学习的延伸和深化,概率图模型(PGM)和深度学习(deep learning)同样值得研究,特别是后者现在简直火得不得了。但PGM偏难,啃K.Daphne那本大作实在太烧脑,也没必要,而且在数据领域的应用也不算很广。deep learning目前工业界的步子迈得比学术界的大,各个domain的应用如火如荼,但要有公认的好教材问世则还需时日,所以PGM和deep learning这两块就不荐书了。

TheElement of Statistical Learning:要学机器学习,如果让我只推荐一本书,我就推荐这本巨着。Hastie、Tibshirani、Friedman这三位大牛写书写得太用心了,大厦建得够高够大,结构也非常严谨,而且很有前瞻性,纳入了很多前沿的内容,而不仅仅是一部综述性的教材。(图表也做得非常漂亮,应该是用R语言的ggplot2做的。)这本书注重讲解模型和算法本身,所以需要具备比较扎实的数理基础,啃起这本书来才不会太吃力。事实上掌握模型和算法的原理非常重要。机器学习(统计学习)的库现在已经非常丰富,即使你没有完全搞懂某个模型或算法的原理和过程,只要会用那几个库,机器学习也能做得下去。但你会发现你把数据代进去,效果永远都不好。但是,当你透彻地理解了模型和算法本身,你再调用那几个库的时候,心情是完全不一样的,效果也不一样。

DataMining: Concepts and Techniques, by Jiawei Han and Micheline Kamber 数据挖掘的教材汗牛充栋,之所以推荐这本韩家炜爷爷的,是因为虽然他这本书的出发点是应用,但原理上的内容也一点没有落下,内容非常完整。而且紧跟时代,更新的很快,我看过的是第二版,就已经加进去了social network analysis这种当时的前沿内容。现在已经有第三版了,我还没看过,但应该也加入了不少新内容。其实这本书并不难读,只是篇幅较长,啃起来比较耗时。

其实这两本书里单拎出来一块内容可能又是几本书的节奏,比如bayesian方法,再拿出两三本书来讲也不为过,我个人用到的比较多,而且也确实有不少好书。但并非是所有data scientist都要用到,所以这一块就不再细说。

还有一些印象比较深刻的书:

Big DataGlossary: 主要讲解大数据处理技术及工具,内容涵盖了NoSQL,MapRece,Storage,Servers,NLP库与工具包,机器学习工具包,数据可视化工具包,数据清洗,序列化指南等等。总之,是一本辞典式的大数据入门指导。

Mining ofMassive Datasets:这本书是斯坦福大学Web Mining的讲义,里面很多内容与韩家炜的Data Mining那本书重合,但这本书里详细地讲了MapRece的设计原理,PageRank(Google创业时期的核心排序算法,现在也在不断优化更新)讲解得也比较详细。

DevelopingAnalytic Talent: 作者是个从事了十几年数据工作的geek,技术博客写得很有个人风格,写的内容都比较偏门,通常只有具备相关数据处理经验的人能体会出来,丝毫不照顾初学者的感受。比如他会谈到当数据流更新太快时该怎么办,或者MapRece在什么时候不好用的问题,才不管你懂不懂相关基础原理。所以这本书不太适合初学者阅读。这本书其实是作者的博客文章的集结,用how to become a data scientist的逻辑把他近几年的博客文章串联了起来。

Past, Present and Future of Statistical Science:这本书是由COPSS(统计学社主席委员会,由国际各大统计学会的带头人组成)在50周年出版的一本纪念册,里面有50位统计学家每人分别贡献出的一两篇文章,有的回忆了自己当年如何走上统计学这条路,有的探讨了一些统计学的根本问题,有的谈了谈自己在从事的前沿研究,有的则给年轻一代写下了寄语。非常有爱的一本书。

其它资料

Harvard Data Science:这是H大的Data science在线课,我没有修过,但口碑很好。这门课需要费用8千刀左右,比起华盛顿大学的4千刀的Data science在线课虽贵一倍,但比斯坦福的14千刀要便宜将近一半(而且斯坦福的更偏计算机)。如果想自学,早有好心人分享了slides:(https://drive.google.com/folderview?id=0BxYkKyLxfsNVd0xicUVDS1dIS0k&usp=sharing)和homeworks and solutions: (https://github.com/cs109/content)

PyData:PyData是来自各个domain的用Python做数据的人每年举行一次的聚会,期间会有各路牛人举行一些规模不大的seminar或workshop,有好心人已经把video上传到github,有兴趣的去认领吧(DataTau/datascience-anthology-pydata · GitHub)

工具

R/Python/MATLAB(必备):如果是做数据分析和模型开发,以我的观察来看,使用这三种工具的最多。R生来就是一个统计学家开发的软件,所做的事也自然围绕统计学展开。MATLAB虽然算不上是个专业的数据分析工具,但因为很多人不是专业做数据的,做数据还是为了自己的domain expertise(特别是科学计算、信号处理等),而MATLAB又是个强大无比的Domain expertise工具,所以很多人也就顺带让MATLAB也承担了数据处理的工作,虽然它有时候显得效率不高。Python虽然不是做数据分析的专业软件,但作为一个面向对象的高级动态语言,其开源的生态使Python拥有无比丰富的库,Numpy, Scipy 实现了矩阵运算/科学计算,相当于实现了MATLAB的功能,Pandas又使Python能够像R一样处理dataframe,scikit-learn又实现了机器学习。

SQL(必备):虽然现在人们都说传统的关系型数据库如Oracle、MySQL越来越无法适应大数据的发展,但对于很多人来说,他们每天都有处理数据的需要,但可能一辈子都没机会接触TB级的数据。不管怎么说,不论是用关系型还是非关系型数据库,SQL语言是必须要掌握的技能,用什么数据库视具体情况而定。

MongoDB(可选):目前最受欢迎的非关系型数据库NoSQL之一,不少人认为MongoDB完全可以取代mySQL。确实MongoDB方便易用,扩展性强,Web2.0时代的必需品。

Hadoop/Spark/Storm(可选): MapRece是当前最着名也是运用最广泛的分布式计算框架,由Google建立。Hadoop/Spark/storm都是基于MapRece的框架建立起来的分布式计算系统,要说他们之间的区别就是,Hadoop用硬盘存储数据,Spark用内存存储数据,Storm只接受实时数据流而不存储数据。一言以蔽之,如果数据是离线的,如果数据比较复杂且对处理速度要求一般,就Hadoop,如果要速度,就Spark,如果数据是在线的实时的流数据,就Storm。

OpenRefine(可选):Google开发的一个易于操作的数据清洗工具,可以实现一些基本的清洗功能。

Tableau(可选):一个可交互的数据可视化工具,操作简单,开箱即用。而且图表都设计得非常漂亮。专业版1999美刀,终身使用。媒体和公关方面用得比较多。

Gephi(可选):跟Tableau类似,都是那种可交互的可视化工具,不需要编程基础,生成的图表在美学和设计上也是花了心血的。更擅长复杂网络的可视化。

来自知乎

以上是小编为大家分享的关于怎样进行大数据的入门级学习?的相关内容,更多信息可以关注环球青藤分享更多干货

2. 大数据学习需要哪些课程

1、Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!

2、Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。

3、Hadoop

Hadoop是大数据开发的重要框架,其核心是HDFS和MapRece,HDFS为海量的数据提供了存储,MapRece为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

4、Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

5、Avro与Protobuf

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。



6、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。

7、HBase

HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

8、phoenix

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

9、Redis

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

3. 一个小白学习学习数据分析师有多难

以下是一个文科生小白转行数据分析的人生历程,分享给你,相信可以帮助正处人生十字路口的朋友或正处于迷茫摇摆时期的人们一些启发或借鉴。
1、在选择数据分析师这条路之前,一定要思考再三,虽然这条路看着光鲜靓丽(至少职业的薪酬收入类比其他行业不会好不少),但也是一条艰难前行之路,充满着未知、荆棘和困惑,尤其是对于文科出身的我,付出的努力更是一般理工男的好几倍吧应该……
2、虽然数据分析这个行业有着天然的专业鄙视链(文理科的逻辑思维功底、编程语言接受程度上以及数理统计基础实实在在的存在差别,这也是甲方更信赖理工科出身的重要原因,因为社科或文艺类专业,很少有学校会严格地按照数理逻辑去制定学生的课程培养计划),但是并不代表文科生没有任何机会,因为大学以前,其实我们都没正式接触过编程或统计学,大学本科更多的是提升一个人的思维、而不是过硬的专研能力。所以文科专业的朋友,兴趣和决定也是重要因素,不能单单凭借客观的专业背景就否定自己。
3、如果你要坚定的选择这条路,就必须克服各种依赖症,比如安装一个R语言或Python软件,从庞大的数据中得出客观的结论过程,用学到的知识去分析数据的价值等等,一定要动手动脑去实战,不要单凭以前的文科思维(更注重思维的创造和个性的发扬),理性思维和客观科学更重要。因为这种学习习惯决定着你必然会被同行的有心者远远地摔在后面,网络、谷歌、Stack Overflow永远向你免费敞开大门;
4、动手实践和实习参与项目是很好的数据科学或者数据分析的开端,只学不练假把式,只有直接用于实战,才能看出来你学的东西到底有多少能够落地,能够用于提升业务的价值;
5、在求职以前,倘若时间允许,把R语言、Python(数据科学相关模块)、SQL(可以选择一个平台,比如MySQL)这三大关卡早点过了。(如果你不想再天天加班补的话);
6、如果你还是在校学生,学会分清各种事情的轻重缓急,比如各种无聊拉人凑场子讲座、听课发礼品的营销洗脑课,各种……的无效应酬社交,如果全部都用在数据分析的学习上,你会发现你的时间多了很多,自然你也可以更早地追上同行的脚步;
7、脚踏实地的去走自己的路,不会的多写、多看、多问(问真正有价值的问题)、多总结、多交流,给自己足够的转行周期(如果你是科班出身的【统计、数学、计算机】,也许会走的顺风顺水,但也不可以掉以轻心,倘若不是,请一定要慎重选择,起码要给自己一到两年的转行缓冲期【具体视自己的专业背景和技术实力而定】,什么7天精通机器学习、三个月精通人工智能,你自己敢信嘛?)
8、学会融会贯通不同领域的知识,触类旁通、横向迁移,这样学起来才有越学越有通透的感觉,否则你只能增加笔记本的厚度,徒增烦恼罢了。
其实文科生学习数据分析或零基础转行的痛快和纠结大家都有,但任何的时间节点上,倘若一直停滞不前、犹豫不决,那么所有可以有或可能有的机会都会错失。庆幸我虽然浑浑噩噩,一路上也是披荆斩棘,但时光不负我,付出终究收获成果!愿所有文科生想进入数据分析行业或转行的小伙伴一切都顺利。

4. 什么是大数据,看完这篇就明白了

什么是大数据

如果从字面上解释的话,大家很容易想到的可能就是大量的数据,海量的数据。这样的解释确实通俗易懂,但如果用专业知识来描述的话,就是指数据集的大小远远超过了现有普通数据库软件和工具的处理能力的数据。

大数据的特点

海量化

这里指的数据量是从TB到PB级别。在这里顺带给大家科普一下这是什么概念。

MB,全称MByte,计算机中的一种储存单位,含义是“兆字节”。

1MB可储存1024×1024=1048576字节(Byte)。

字节(Byte)是存储容量基本单位,1字节(1Byte)由8个二进制位组成。

位(bit)是计算机存储信息的最小单位,二进制的一个“0”或一个“1”叫一位。

通俗来讲,1MB约等于一张网络通用图片(非高清)的大小。

1GB=1024MB,约等于下载一部电影(非高清)的大小。

1TB=1024GB,约等于一个固态硬盘的容量大小,能存放一个不间断的监控摄像头录像(200MB/个)长达半年左右。

1PB=1024TB,容量相当大,应用于大数据存储设备,如服务器等。

1EB=1024PB,目前还没有单个存储器达到这个容量。

多样化

大数据含有的数据类型复杂,超过80%的数据是非结构化的。而数据类型又分成结构化数据,非结构化数据,半结构化数据。这里再对三种数据类型做一个分类科普。

①结构化数据

结构化的数据是指可以使用关系型数据库(例如:MySQL,Oracle,DB2)表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。所以,结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。

但是,它的扩展性不好。比如,如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的,这也容易导致后台接口从数据库取数据出错。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。

②半结构化数据

半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。常见的半结构数据有XML和JSON。

③非结构化数据

非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、各类报表、图像和音频/视频信息等等。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。所以存储、检索、发布以及利用需要更加智能化的IT技术,比如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等。

快速化

随着物联网、电子商务、社会化网络的快速发展,全球大数据储量迅猛增长,成为大数据产业发展的基础。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB。预测未来几年,全球大数据储量规模也都会保持40%左右的增长率。在数据储量不断增长和应用驱动创新的推动下,大数据产业将会不断丰富商业模式,构建出多层多样的市场格局,具有广阔的发展空间。

核心价值

大数据的核心价值,从业务角度出发,主要有如下的3点:

a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;

b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等。

c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等。

大数据能做什么?

1、海量数据快速查询(离线)

能够在海量数据的基础上进行快速计算,这里的“快速”是与传统计算方案对比。海量数据背景下,使用传统方案计算可能需要一星期时间。使用大数据 技术计算只需要30分钟。

2.海量数据实时计算(实时)

在海量数据的背景下,对于实时生成的最新数据,需要立刻、马上传递到大数据环境,并立刻、马上进行相关业务指标的分析,并把分析完的结果立刻、马上展示给用户或者领导。

3.海量数据的存储(数据量大,单个大文件)

大数据能够存储海量数据,大数据时代数据量巨大,1TB=1024*1G 约26万首歌(一首歌4M),1PB=1024 * 1024 * 1G约2.68亿首歌(一首歌4M)

大数据能够存储单个大文件。目前市面上最大的单个硬盘大小约为10T左右。若有一个文件20T,将 无法存储。大数据可以存储单个20T文件,甚至更大。

4.数据挖掘(挖掘以前没有发现的有价值的数据)

挖掘前所未有的新的价值点。原始企业内数据无法计算出的结果,使用大数据能够计算出。

挖掘(算法)有价值的数据。在海量数据背景下,使用数据挖掘算法,挖掘有价值的指标(不使用这些算法无法算出)

大数据行业的应用?

1.常见领域

2.智慧城市

3.电信大数据

4.电商大数据

大数据行业前景(国家政策)?

2014年7月23日,国务院常务会议审议通过《企业信息公示暂行条例(草案)》

2015年6月19日,国家主席、总理同时就“大数据”发表意见:《国务院办公厅关于运用大数据加强对市场主体服务和监管的若干意见》

2015年8月31日,国务院印发《促进大数据发展行动纲要》。国发〔2015〕50号

2016年12月18日,工业和信息化部关于印发《大数据产业发展规划》

2018年1月23日。中央全面深化改革领导小组会议审议通过了《科学数据管理办法》

2018年7月1日,国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》

2019年政府工作报告中总理指出“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”

总结

我国着名的电商之父,阿里巴巴创始人马云先生曾说过,未来10年,乃至20年,将是人工智能的时代,大数据的时代。对于现在正在学习大数据的我们来说,未来对于我们更是充满了各种机遇与挑战。

python学习网,大量的免费python视频教程,欢迎在线学习!

阅读全文

与大数据统计和硬辅哪个好相关的资料

热点内容
和网红怎么合作产品 浏览:814
三个产品三句话怎么排版 浏览:487
微信小程序养猫能赚多少钱 浏览:673
数据库和linux操作哪个实用 浏览:386
加工中心关机再开机怎么继续程序 浏览:116
如何在论文中加程序代码 浏览:696
台电plc用什么软件编写程序 浏览:848
运动类有什么产品 浏览:380
如何把信息发给群里每个人 浏览:811
成都口腔医学检验技术哪个好 浏览:556
校长必读如何建设强势的市场部 浏览:933
生物酶技术原理是什么 浏览:219
我想了解市场氛围怎么样 浏览:846
如何收缩桌面程序 浏览:937
美容美发行业有哪些产品 浏览:160
郑州派对屋音响代理在哪里 浏览:346
如何看待旅游产品单一 浏览:452
国有土地征收程序在哪个文件 浏览:451
淘宝周边代理多少钱 浏览:872
龙币交易什么时候恢复 浏览:803