❶ 数据探索 —— 数据质量分析
数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据质量分析的主要任务是检查原始数据中是否存在脏数据,脏数据一般是指不符合要求,以及不能直接进行响应分析的数据。在常见的数据挖掘工作中,脏数据包括如下内容:
数据的缺失主要包括记录的缺失和记录中某个字段信息的缺失,两者都会造成分析结果的不准确,以下从缺失值产生的原因及影响等方面展开分析。
(1)缺失值产生的原因
1)有些信息暂时无法获取,或者获取信息的代价太大。
2)有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障等非人为原因而丢失。
3)属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值不存在的,如一个未婚者的配偶姓名、一个儿童的固定收入等。
(2)缺失值的影响
1)数据挖掘建模将丢失大量的有用信息。
2)数据挖掘模型所表现出的不确定性更加显着,模型中蕴含的规律更难把握。
3)包含空值的数据会使建模过程陷入混乱,导致不可靠的输出。
(3)缺失值的分析
使用简单的统计分析,可以得到含有缺失值的属性的个数,以及每个属性的未缺失数、缺失数与缺失率等。
异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。
异常值是指样本中的个别值,其数据明显偏离其余的观测值。异常值也称为离群点,异常值的分析也称为离群点分析。
(1)简单计量分析
可以先对变量做一个描述性统计,进而查看哪些数据是不合理的。最常用的统计量是最大值和最小值,用来判断这个变量的取值是否超出了合理的范围。如客户年龄的最大值为199岁,则该变量的取值存在异常。
(2)3σ原则
如果数据服从正态分布,在3σ原则下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。在正态分布的假设下,距离平均值3σ之外的值出现的概率为P(|x-μ|>3σ)≤0.003,属于极个别小概率事件。
如果数据不服从正态分布,也可以用远离平均值的多少倍标准差来描述。
(3)箱型图分析
箱型图提供了识别异常值的一个标准:异常值通常被定义为小于QL-1.5IQR或大于Qu+1.5IQR的值。QL成为下四分位数,表示全部观察值中有四分之的数据取值比它小;Qu称为上四分位数,表示全部观察值中有四分之一的数据取值比它大;IQR称为四分位数间距,是上四分位数与下四分位数之差,其间包含了全部观察值的一半。
箱型图依据实际数据绘制,没有对数据作任何限制性要求(如服从某种特定的分布形式),它只是真实直观地表现数据分布的本来面貌;另一方面,箱型图判断异常值的标准以四分位数和四分位距为基础,四分位数具有一定的鲁棒性:多达25%的数据可以变得任意远而不会很大地扰动四分位数,所以异常值不能对这个标准施加影响。由此可见,箱型图识别异常值得结果比较客观,在识别异常值方面有一定的优越性。
在餐饮系统中的销量额数据可能出现缺失值和异常值,如下表所示:
分析餐饮系统日销售额数据可以发现,其中有部分数据是缺失的,但是如果数据记录和属性较多,使用人工分辨的方法就不切合实际,所以这里需要编写程序来检测出含有缺失值的记录和属性以及缺失率个数和缺失率。
在Python的Pandas库中,只需要读入数据,然后使用describe()函数就可以查看数据的基本情况。
运行结果如下:
其中count是非空数值,通过len(data)可以知道数据记录为201条,因此缺失值数为1。另外,提供的基本参数还有平均值(mean)、标准差(std)、最小值(min)、最大值(max)以及1/4、1/2、3/4分位数(25%、50%、75%)。更直观地展示这些数据,并且可以检测异常值的方法是使用箱型图。
运行程序,其结果为“缺失值个数为:1”,同时可以得到如上图所示的箱型图。
从图中可以看出,箱型图中超过上下界的7个销售额数据可能为异常值。结合具体业务可以把865、4060.3、4065.2归为正常值,将22、51、60、6607.4、9106.44归为异常值。最后确定过滤规则为:日销量在400以下5000以上则属于异常数据,编写过滤程序,进行后续处理。
数据不一致性是指数据的矛盾性、不相容性。直接对不一致的数据进行挖掘,可能会产生与实际相违背的挖掘结果。
在数据挖掘过程中,不一致数据的产生主要发生在数据集成过程中,这可能是由于从不同的数据源、对于重新存放的数据未能进行一致性造成的。例如,两张表中都存储了用户的电话号码,但在用户的电话号码发生改变时只更新了一张表中的数据,那么这两张表中就有了不一致的数据。
❷ 达县统计局如何进行数据质量监管
达县统计局的主要职责涉及以下几个方面:
统计局组织学习和宣传统计法律、法规,严格执行国家统计法律法规,确保其有效实施。通过全县性统计执法检查,规范统计秩序,保障统计数据的准确性和可靠性。
统计局负责协调各股室、乡镇和部门,严格执行国家统计标准和报表制度。制定并管理地方统计和国民经济核算体系,确保统计数据的统一性和完整性。
统计局督促行政区域内的单位配置统计资源,完成统计任务。组织全县性普查和专项调查,对统计数据质量进行严格监控。
统计局进行深入的统计分析,为决策提供依据,并参与全县经济社会目标责任的考核,实施有效监督。
统计局负责核定、管理、公布和出版全县性基本统计资料,定期发布国民经济和社会发展的重要统计信息。
统计局致力于统计现代化,管理全县统计信息自动化和统计数据库体系,提高工作效率。
统计局对统计机构和人员进行业务考核,并组织统计专业技术资格考试、技术职务评审和统计人员的岗位培训。
受省统计局委托,统计局领导和管理达县农村社会经济调查队,确保农村统计数据的准确。
统计局负责本系统的精神文明建设、社会稳定和安全工作,维护良好的统计工作环境。
❸ 在收集数据时对数据质量进行控制的主要办法包括
在收集数据时对数据质量进行控制的主要办法包括:
1.明确研究目的和问题:
在数据收集之前,研究者需要明确研究的目的和问题。这有助于确定需要收集的数据类型、范围和深度,从而提高数据的准确性和相关性。明确研究目的有助于避免不必要的数据收集,使得数据更加有针对性。
9.建立数据管理系统:
建立科学的数据管理系统有助于确保数据的安全性和完整性。包括数据备份、权限管理、版本控制等方面的措施,可以有效防范数据丢失和篡改的风险。
10.开展数据质量评估:
在数据收集结束后,进行数据质量评估是一个总结性的环节。通过统计分析、逻辑检查、异常值分析等方法,对数据进行全面评估,发现潜在问题并提出改进意见,为后续数据分析提供可靠的基础。
总体而言,对数据质量的控制是数据收集过程中至关重要的一环。通过上述主要办法的综合应用,研究者可以有效提高数据的准确性、可靠性和科学性,确保研究结论的有效性和可信度。