1. 数据分析模式有几种分别是什么呢
一般而言,数据分析模式有四种,描述性数据分析、诊断性数据分析、预测性数据分析、指导性数据分析。
4)指导型数据分析
知道事情的严重性还不行,你还需要知道通过怎么样的办法来进行改善产品质量,从而提升产品的销量。这时候你通过调取产品线的各项抽样数据,然后进行细致的分析,你突然发现某个生产线的质量是产品质量差的关键。
因此,是时候对这个产品线进行一些处理了,不然会影响整个品牌乃至企业的。
这就是数据分析常见的四种分析模型,希望对你有所帮助。
2. 如何分析销售数据与报表
为什么要做销售数据分析?
企业的业务数据涉及销售数据、财务数据、人力数据、产品数据等多种类型,而销售数据在所有数据中的重要性毋庸置疑。通过分析销售数据,将有助于发现经营问题,降低销售成本,最终提高企业销售利润。
关键指标提取
不同行业对销售指标的侧重各有不同,本文将以建材行业为例进行说明。
其中涉及的销售数据指标包括:销售数量、销售单价、销售收入、单位成本、销售成本、销售毛利等,原始数据中还会涉及月份、城市、分类、计量单位、对应客户等信息。
图表与看板制作
提取完重要数据指标后,您就可以根据需求制作相关看板与图表。在此之前,用户必须对需要监控的指标做到心中有数。
一般来说,制作看板时,根据目的不同可以分为三类:
1. 基础数据看板:总览全局
这类看板大家都比较熟悉,主要是由包括地图、条形图、饼图等一系列的基础图表组成,用于查看不同地区、时间、类别的销售收入、销售成本等基础数据。下图是根据建材行业的示例数据生成的一个看板:
(以上图表使用DataHunter制作)
3. 销售数据分析
1)销售排名:优秀的销售都喜欢拼第一,所以销售龙虎榜尤为重要,每天莓菌会通过实际业绩排名对前三名员工给予相应的奖励,老板也会通过排行榜了解各部门业绩情况。
2)客户排行榜:客户方面也会做成交额汇总,因为大客户是需要定期维护的。对于有些大客户,成交额下降可以提醒我们及时做好补救。
3)库存管理:对于销售而言,了解公司库存会节约很大的成本,因为一旦缺货就会影响正常的交付时间。而管理者,通过图表来了解产品销售情况,哪些产品卖的好一目了然。
BDP除了能做以上这些好看的图表,数据还可以自动更新:第一次做好分析之后,以后数据结果会自动定时更新哦(当然我连接了数据库数据、表单数据)。
这些数据都是销售最经常关注的数据,做好图表后直接通过“分享”功能将数据结果分享给Boss,数据变动,分享的结果也会变动,这样分析效率大大提高了呢,老板也特别喜欢。