A. 大数据5大关键处理技术
大数据已经逐渐普及,大数据处理关键技术一般包括:
大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用
(
大数据检索、大数据可视化、大数据应用、大数据安全等
)。
一、数据采集
如何从
大数据中采集出有用的信息已经是大数据发展的关键因素之一
。因此在大数据时代背景下,如何从大数据中采集出有用的信息已经是大数据发展的关键因素之一,数据采集才是大数据产业的基石。那么什么是大数据采集技术呢?数据采集(DAQ): 又称数据获取,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。
数据分类新一代数据体系中,将传统数据体系中没有考虑过的新数据源进行归纳与分类,可将其分为线上行为数据与内容数据两大类。
?线上行为数据:页面数据、交互数据、表单数据、会话数据等。
?内容数据:应用日志、电子文档、机器数据、语音数据、社交媒体数据等。
?大数据的主要来源(人、环境、物体等,互联网,物联网等):
1)商业数据
2)互联网数据
3)传感器数据
数据采集与大数据采集区别
传统数据采集
1. 来源单一,数据量相对于大数据较小
2. 结构单一
3. 关系数据库和并行数据仓库
大数据的数据采集
1. 来源广泛,数据量巨大
2. 数据类型丰富,包括结构化,半结构化,非结构化
3. 分布式数据库
传统数据采集的不足
传统的数据采集来源单一,且存储、管理和分析数据量也相对较小,大多采用关系型数据库和并行数据仓库即可处理。
对依靠并行计算提升数据处理速度方面而言,传统的并行数据库技术追求高度一致性和容错性,根据CAP理论,难以保证其可用性和扩展性
大数据采集新的方法
?系统日志采集方法
很多互联网企业都有自己的海量数据采集工具,多用于系统日志采集,如Hadoop的Chukwa,Cloudera的Flume,Facebook的Scribe等,这些工具均采用分布式架构,能满足每秒数百MB的日志数据采集和传输需求。
?网络数据采集方法
网络数据采集是指通过网络爬虫或网站公开API等方式从网站上获取数据信息。
该方法可以将非结构化数据从网页中抽取出来,将其存储为统一的本地数据文件,并以结构化的方式存储。
它支持图片、音频、视频等文件或附件的采集,附件与正文可以自动关联。
除了网络中包含的内容之外,对于网络流量的采集可以使用DPI或DFI等带宽管理技术进行处理。
?其他数据采集方法
对于企业生产经营数据或学科研究数据等保密性要求较高的数据,可以通过与企业或研究机构合作,使用特定系统接口等相关方式采集数据。
二、大数据预处理
高质量的决策必须依赖高质量的数据,而从现实世界中采集到的数据大多是不完整、结构不一致、含噪声的脏数据,无法直接用于数据分析或挖掘。数据预处理就是对采集到的原始数据进行清洗、填补、平滑、合并、规格化以及检查一致性等。这个处理过程可以帮助我们将那些杂乱无章的数据转化为相对单一且便于处理的构型,以达到快速分析处理的目的。
通常数据预处理包含三个部分:
数据清理、数据集成、变换以及数据规约。
一)、数据清理
并不是所有的数据都是有价值的,有些数据并不是我们所关心的内容,有些甚至是完全错误的干扰项。因此要对数据过滤、去噪,从而提取出有效的数据。
数据清理主要包含
遗漏值处理(缺少感兴趣的属性)、噪音数据处理(数据中存在着错误、或偏离期望值的数据)、不一致数据处理。
遗漏数据可用全局常量、属性均值、可能值填充或者直接忽略该数据等方法处理;
噪音数据可用分箱(对原始数据进行分组,然后对每一组内的数据进行平滑处理)、聚类、计算机人工检查和回归等方法去除噪音;对于不一致数据则可进行手动更正。
二)、数据集成与变换
数据集成是指把多个数据源中的数据整合并存储到一个一致的数据库中。这一过程中需要着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。
由于来自多个数据集合的数据在命名上存在差异,因此等价的实体常具有不同的名称。如何更好地对来自多个实体的不同数据进行匹配是如何处理好数据集成的首要问题。
数据冗余可能来源于数据属性命名的不一致,在解决数据冗余的过程中,可以利用皮尔逊积矩Ra,b来衡量数值属性,绝对值越大表明两者之间相关性越强。对于离散数据可以利用卡方检验来检测两个属性之间的关联。
数据集成中最后一个重要问题便是数据值冲突问题,主要表现为来源不同的统一实体具有不同的数据值。
为了更好地对数据源中的数据进行挖掘,数据变换是必然结果。其主要过程有平滑、聚集、数据泛化(使用高层的概念来替换低层或原始数据)、规范化(对数据)以及属性构造等。
三)、数据规约
数据规约主要包括:
数据方聚集、维规约、数据压缩、数值规约和概念分层等。
假若根据业务需求,从数据仓库中获取了分析所需要的数据,这个数据集可能非常庞大,而在海量数据上进行数据分析和数据挖掘的成本又极高。使用数据规约技术则可以实现数据集的规约表示,使得数据集变小的同时仍然近于保持原数据的完整性。在规约后的数据集上进行挖掘,依然能够得到与使用原数据集近乎相同的分析结果。
三、存储及管理技术
在大数据时代的背景下,海量的数据整理成为了各个企业急需解决的问题。
云计算技术、物联网等技术快速发展,
多样化已经成为数据信息的一项显着特点
,为充分发挥信息应用价值,有效存储已经成为人们关注的热点。
为了有效应对现实世界中复杂多样性的大数据处理需求,需要针对不同的大数据应用特征,从
多个角度、多个层次
对大数据进行存储和管理。
一)大数据面临的存储管理问题
●存储规模大
大数据的一个显着特征就是数据量大,起始计算量单位至少是PB,甚至会采用更大的单位EB或ZB,导致存储规模相当大。
●种类和来源多样化,存储管理复杂
目前,大数据主要来源于搜索引擎服务、电子商务、社交网络、音视频、在线服务、个人数据业务、地理信息数据、传统企业、公共机构等领域。
因此数据呈现方法众多,可以是结构化、半结构化和非结构化的数据形态,
不仅使原有的存储模式无法满足数据时代的需求,还导致存储管理更加复杂。
●对数据服务的种类和水平要求高
大数据的价值密度相对较低,以及数据增长速度快、处理速度快、时效性要求也高
,在这种情况下如何结合实际的业务,有效地组织管理、存储这些数据以能从浩瀚的数据中,挖掘其更深层次的数据价值,需要亟待解决。
大规模的数据资源蕴含着巨大的社会价值,有效管理数据,对国家治理、社会管理、企业决策和个人生活、学习将带来巨大的作用和影响,
因此在大数据时代,必须解决海量数据的高效存储问题。
二)我国大数据的存储及处理能力挑战
当前,我国大数据存储、分析和处理的能力还很薄弱,与大数据相关的技术和工具的运用也相当不成熟,大部分企业仍处于IT产业链的低端。
我国在数据库、数据仓库、数据挖掘以及云计算等领域的技术,普遍落后于国外先进水平。
在大数据存储方面,数据的爆炸式增长,数据来源的极其丰富和数据类型的多种多样,使数据存储量更庞大,对数据展现的要求更高。而目前我国传统的数据库,还难以存储如此巨大的数据量。
因此,
如何提高我国对大数据资源的存储和整合能力,实现从大数据中发现、挖掘出有价值的信息和知识
,是当前我国大数据存储和处理所面临的挑战。
三)大数据存储管理技术
近年来,
企业也从大数据中受益
,大幅度推动支出和投资,并允许他们与规模更大的企业进行竞争。
所有事实和数字的存储和管理逐渐变得更加容易。以下是有效存储和管理大数据的三种方式。
●不断加密
任何类型的数据对于任何一个企业来说都是至关重要的
,而且通常被认为是私有的,并且在他们自己掌控的范围内是安全的。
然而,黑客攻击经常被覆盖在业务故障中,最新的网络攻击活动在新闻报道不断充斥。因此,许多公司感到很难感到安全,尤其是当一些行业巨头经常成为攻击目标时。
随着企业为保护资产全面开展工作,
加密技术成为打击网络威胁的可行途径
。将所有内容转换为代码,使用加密信息,只有收件人可以解码。
如果没有其他的要求,则
加密保护数据传输,增强在数字传输中有效地到达正确人群的机会。
●仓库存储
大数据似乎难以管理,就像一个永无休止统计数据的复杂的漩涡。
因此,将信息精简到单一的公司位置似乎是明智的,这是一个仓库,其中所有的数据和服务器都可以被充分地规划指定。
然而,有些报告指出了反对这种方法的论据,指出即使是最大的存储中心,大数据的指数增长也不再能维持。
然而,在某些情况下,企业可能会租用一个仓库来存储大量数据,在大数据超出的情况下,这是一个临时的解决方案,而LCP属性提供了一些很好的机会。
毕竟,企业不会立即被大量的数据所淹没,因此,为物理机器租用仓库至少在短期内是可行的。这是一个简单有效的解决方案,但并不是永久的成本承诺。
●备份服务 - 云端
除了所有技术的发展,大数据增长得更快,以这样的速度,世界上所有的机器和仓库都无法完全容纳它。
因此,
由于云存储服务推动了数字化转型,云计算的应用越来越繁荣
。数据在一个位置不再受到风险控制,并随时随地可以访问,大型云计算公司(如谷歌云)将会更多地访问基本统计信息。
如果出现网络攻击,云端将以A迁移到B的方式提供独一无二的服务。
三)结论
目前原有的存储模式以及跟不上时代的步伐,无法满足数据时代的需求,导致信息处理技术无法承载信息的负荷量。
这就
需要对数据的存储技术和存储模式进行创新与研究,跟上数字化存储的技术的发展步伐,给用户提供一个具有高质量的数据存储体验。
根据大数据的特点的每一种技术都各有所长,彼此都有各自的市场空间,在很长的一段时间内,满足不同应用的差异化需求。
但为了更好的满足大数据时代的各种非结构化数据的存储需求,数据管理和存储技术仍需进一步改进和发展
。
可能有些中小企业无法自己快速的获取自己的所需的数据进行分析,这就需要到了
第三方的数据平台进行大数据分析
。
四、大数据分析及挖掘技术
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取
隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
一)数据挖掘对象:
根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。
二)数据挖掘流程
1)定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
2)数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;
3)数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
4)数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
5)结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。
三)数据挖掘分类
直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。
间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。
四)数据挖掘的方法
1、神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
2、遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。
遗传算法具有的隐含并行性、易于和其它模型结合等性质
使得它在数据挖掘中被加以应用。
3、决策树方法
决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是
描述简单,分类速度快,
特别适合大规模的数据处理。
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:
不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。
粗集处理的对象是类似二维关系表的信息表。
4、覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
5、统计分析方法
在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。
6、模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。
系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。
大数发掘技术,目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
五)着重突破技术
1. 可视化分析
不论是分析专家,还是普通用户,在分析大数据时,
最基本的要求就是对数据进行可视化分析
。经过可视化分析后,大数据的特点可以直观地呈现出来,将单一的表格变为丰富多彩的图形模式,简单明了、清晰直观,更易于读者接受。
2. 数据挖掘算法
数据挖掘算法是根据数据创建数据挖掘模型的一组试探法和计算。
为了创建该模型,算法将首先分析用户提供的数据,针对特定类型的模式和趋势进行查找。
并使用分析结果定义用于创建挖掘模型的最佳参数,将这些参数应用于整个数据集,以便提取可行模式和详细统计信息。
大数据分析的理论核心就是数据挖掘算法,数据挖掘的算法多种多样,不同的算法基于不同的数据类型和格式会呈现出数据所具备的不同特点。各类统计方法都能深入数据内部,挖掘出数据的价值。
为特定的分析任务选择最佳算法极具挑战性,使用不同的算法执行同样的任务,会生成不同的结果,而某些算法还会对同一个问题生成多种类型的结果。
3. 预测性分析
大数据分析最重要的应用领域之一就是预测性分析,
预测性分析结合了多种高级分析功能,包括特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等。
从纷繁的数据中挖掘出其特点,可以帮助我们了解目前状况以及确定下一步的行动方案,从依靠猜测进行决策转变为依靠预测进行决策。它可帮助分析用户的结构化和非结构化数据中的趋势、模式和关系,运用这些指标来洞察预测将来事件,并作出相应的措施。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统地去分析,提炼数据。语义引擎是语义技术最直接的应用,可以将人们从繁琐的搜索条目中解放出来,让用户更快、更准确、更全面地获得所需信息,提高用户的互联网体验。
5. 数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理无论是在学术研究还是在商业应用领域都极其重要,各个领域都需要保证分析结果的真实性和价值性。
可能有些中小企业无法自己快速的获取自己的所需的数据进行分析,这就需要到了第三方的数据平台进行大数据分析。
五、大数据应用
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,
为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。
最后,是展现,主要是可视化,现在有很多工具,可以直接展现出各种静态和动态效果,非常酷炫。在此不做描述。
B. 大数据时代是什么意思的
大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,而这个海量数据的时代则被称为大数据时代。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
(2)大数据具有哪些表现形态扩展阅读:
大数据时代的影响:
1、不是随机样本,而是全体数据:
在大数据时代,人们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前人们通常把这看成是理所应当的限制,但高性能的数字技术让人们意识到,这其实是一种人为限制)。
2、不是精确性,而是混杂性:
研究数据如此之多,以至于人们不再热衷于追求精确度;之前需要分析的数据很少,所以人们必须尽可能精确地量化人们的记录,随着规模的扩大,对精确度的痴迷将减弱。
拥有了大数据,人们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可,适当忽略微观层面上的精确度,会让人们在宏观层面拥有更好的洞察力;
3、不是因果关系,而是相关关系:
人们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,人们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉人们某件事情为何会发生,但是它会提醒人们这件事情正在发生。
参考资料来源:网络-大数据时代
C. 大数据是干嘛的
大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集、整理、传输、存储、安全、分析、呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网、云计算也都有密切的联系。
大数据是一个抽象的概念,对当前无论是企业还是政府、高校等单位面临的数据无法存储、无法计算的状态。
(3)大数据具有哪些表现形态扩展阅读:
大数据应用举例
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
D. 什么是大数据时代
在大数据与深度学习中蝶化的人工智能。当代人工智能离不开大数据和深度学习算法。我们先来了解什么是大数据,大数据的本质是什么,在大数据时代我们应该如何应对?
当我们谈论数据的时候我们在谈什么?在大部分人的日常印象中,数据代表的可能是每月水电煤账单上的数字,股票k线图上的红绿指数,还有可能是电脑文件里那一堆看不懂的源代码。
人工智能眼中的数据远比这些广泛。数据的存在形式随着人类文明的发展不断改变,从最初的声音,文字,图画,数字,到电子时代的每一张图片,每一段语音,每一个视频,再到如今互联网时代人类每一次的鼠标点击,用手机时每一次的手指滑动,乃至每一下心跳和呼吸,甚至经济生产中的一切人机动作,轨迹,都已融入数据流。今天的人类已经能够将各种或大或小的事物转化为数据记录,变成我们生活的一部分。数据已经浸染我们生活的每一个细节,就如生物学家所说人体组织的一半是由微生物组成,在数字时代,我们生活的一半已然是数据。在日常生活中,数据的概念对于我们即亲近又陌生。亲近它是因为我们从小就会接触加减乘除这些最基本的数据和算法。步入社会后也在与各种文件报表账单打交道。与此同时,当面对高科技产品中各种关于内存,分辨率等时髦又复杂的数据是,我们又觉得不了解它们甚至没意识到它们的存在。随着大数据,机器算法和人工智能的理念相继到来,这种陌生感会越发加深。
那么数据生活距离我们遥远吗?正相反,数据与我们日常生活的联系从未如此紧密过,从没有像今天如此活跃,具体的记录着人类与世界。从最初的计算机,摄像头到家用计算机,智能手机,再到大数据和人工智能,我们不断升级采集和利用数据的方式。而现在,从一辆车的每日碳排放量统计到全球气温的检测,从预测个人在网上喜好分析到总统选举时投票趋势的预测,我们都可以做到。数据将人与人,人与世界连接起来,构成一张繁密的网络,每个人都在影响世界,又在被他人影响着。传统的统计方法已经无法处理这种相互影响的数据,这么办?答案是让机器自己来处理数据,从数据中习得知识。这便是当代人工智能的本质。与传统的数据记录定义不同,这种数据是有“生命”的。它更像是我们身体的一种自然延伸:聆听我们的声音,拓宽我们的视野,加深我们的记忆,甚至组成一个以数据形式存在的“我”。
自工业革命以来,数据经历过一次又一次的爆发,何以近年来才出现大数据的概念?什么是大数据?
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。从概念中可以得知大数据技术的关键 不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。从技术上看,大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。大数据必须具有几大特征:
一,大数据的“大”。与传统数据的储存方式相比是几何量级的差距。
二,多维度。表示大数据可以对一个事物进行多方位的描述,从而更准确。
三,处理非结构数据的能力。未来10年新生数据总量的90%为非结构化数据。大数据通过图像识别,语音识别,自然语言分析等技术计算,分析大量非结构化数据,大大提升数据维度。
四,大数据是生生不息的“流”,具有时间性。一是因为数据量巨大,无法全部储存。另一方面是大数据和人类生生不息的行动相关,瞬息万变。
五,最重要的是,大数据的大表现为无尽的重复。量变促成质变,在机器智能领域,数据量的大小和处理速度的快慢可以直接决定智力水平的高低。
希望对您有所帮助!~
E. 大数据改变世界的五种方式
大数据改变世界的五种方式
随着电脑科技的发展,计算能力不再是像以前那样的“奢侈品”。现在的我们就彷如畅泳在一个巨大的数据水库,而这个数据库包罗万象:从繁忙时段一个明尼苏达州小镇的表现至在也门成功使用无人飞机轰炸的可能性。大数据的到来意味着公司,机构以及政府等可以同过收集,挖掘并利用这些庞大的数据区完成神奇的事情。
让我们看看神奇的大数据如何改变世界:
1.数据化身致命武器:
信息作为大数据时代最有效最具杀伤力的武器同时也正在被大量用于该时代的军备竞赛,但现今的军事技术数据来源正受限于卫星,无人飞行旗以及更多传统方式得到的数据。美国国防部启动一项名为XDATA的方案,其作为奥巴马政府发布的大数据倡议的一部分主要致力于以2.5亿美元研发一个分析大数据的系统。随着越来越多的有效运算,美军能够将PB级的数据运用到尖端优势上,例如让无人轰炸机变得前所未有的智能以及致命。
2.拯救地球:
除了让捕食者无人机更有威力和增加零售利润外,大数据更能造福世界。以开源的大数据平台Google Earth引擎为例,研究人员可利用它绘制出第一张莫斯科森林的高分辨率的地图。如果仅利用传统的电脑计算方法绘制需要3年时间,对比之下使用Google Earth仅需一天时间。
像这种大规模的数据集合能够让人类在系统层面上理解生态危机。我们知道越多地球生态系统以及天气形态变化数据,就越容易模型化未来环境的变迁,因而也能够在我们力所能及的时候去阻止不好的转变发生。
3.预测购物趋势:
消费者的购物趋势能够在以前的购物记录大数据挖掘中得出,销售公司不论大少均有可能预测到你需要买什么,他们甚至比你自己更懂你。因而从消费者当前购物数据中从大数据中能够获得大利润。网上零售商如亚马逊正在大量收集我们的购物以及网上购物数据,甚至线下零售商也开始紧跟这一趋势着手收集消费者的消费数据。一些聪明的公司看准这点,以RetailNext为例,它是为Brookstone 以及American Apparel等公司提供购物者浏览以及购物时的录像记录。 RetailNext将一个购买者在店铺移动的轨迹转化为上万数据点,就可以得到购物者在店内浏览商品的移动过程,停留点以及其与销售的相关性。
4.加速科学研究发展速度:
一直以来数据都是科学发现的支柱,现在由于大数据的发展以及高运算力的支持,科研步伐也正飞速向前。
以人类历史上科学成就指标性的 人类基因组计划为例,当时花费达30亿美元,耗时13年才完成大约含25000个基因的人类基因组测序及分析。若应用当代先进的数据收集分析方法,使用一个如U盘大小的装置区完成这项工作仅需几小时就足矣,其花费也仅仅是1000美元。
5.大数据导致更大的隐私威胁:
你也许只是从大“据”考虑,但是这句格言不再像以前一样好用了。若说大数据与广度攸关是正确无误的,但是深度对大数据来说也是同等重要的。
网络巨头如Facebook和Google不单单积累了广度上的数据—大量的用户(FB拥有9.55亿用户),他们对深度上的数据–用户(使用网络的)数据也了如指掌。譬如,他们知道你搜索的内容,你点击了什么页面以及你认识什么人。最大的网络大鳄拥有足以让他们无所不知的大量的数据。
在这里的技术力量,文化进步和利润的相交之处,有一件事是确定的:数据越大责任越大(蜘蛛侠中枪)。
F. 什么是大数据技术大数据的概念
大数据技术是指大数据的应用技术,涵盖各类大数据平台、大数据指数体系等大数据应用技术。
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
随着云时代的来临,大数据也吸引了越来越多的关注。分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
(6)大数据具有哪些表现形态扩展阅读:
大数据的三个层面:
1、理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
2、技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
3、实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
参考资料来源:网络-大数据
G. 大数据的表现形态有哪些
大数据里面的数据,分三种类型:
(1)结构化的数据:即有固定格式和有限长度的数据。
(2)非结构化的数据:现在非结构化的数据越来越多,就是不定长、无固定格式的数据,例如网页、语音,视频等。
(3)半结构化数据:是一些XML或者HTML的格式的数据。
H. 大数据可以应用在哪些方面
可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
网络--大数据