导航:首页 > 数据处理 > 如何系统学习数据挖掘

如何系统学习数据挖掘

发布时间:2024-10-02 16:10:52

Ⅰ 想自学数据挖掘需要什么基础

我先介绍下我自己,我不是搞纯数学专业的,我是REDHAT LINUX“红帽子”公司的资深系统级工程师。我也做过数据挖掘方面的工作!为一个在甲骨文的朋友搞一些数据方面的工作。所以为了应付我也大概突击了下,才发现这门学科有窍门!
首先,我要说的是我觉得你是一名在校大学生!Data Mining不是你想的那么简单,他不单单和数学有关系,还包括了计算机领域的诸多学科。还有社会工程学、逻辑学等文科和理科的交叉学科!他是一门庞大的体系。你要是真想学我只能给你指条比较快的成才之路,后面的东西自己慢慢学都赶趟!慢慢充实自己!大学四年好好利用!学无止境!
既然是数据分析那你的高等数学必须要过硬,别着急这只是你的其他学科的基础课。其次是概率与统计,这才是正科,大学那点玩意就是糊弄人的,你要多看这方面的书。这个一定要学好!线性必须要会要精通。因为数据划分是数据挖掘里最重要的一个环节。这个就是线性范畴里的了。也要精通,学会线性分析你就发现你就学会了很多。数学有这三个底子就可以了。数学分析不要看了。因为那只是高数的延伸!
计算机你一定要懂。数据库你必须得学会。三大数据库ORACLE.SQL.MYSQL原理基本类似触类旁通!
还有就是培养你的思维,尽量缜密敏捷。这样才可以发现数据中的不同!因为有的数据挖掘是计算机处理的。有的则是纸面上的。所以必须学会记录
好了,就先这么多了。你学会了这几个就是你进军下一步的基础,这几个就够你学一阵子的了。
祝你好运哥们!

Ⅱ 学会用聚类算法进行数据挖掘需要怎样的数学基础

会用聚类算法进行数据挖掘需要线性代数, 变分演算,距离度量,距离矩阵等的数学知识基础。

在数据科学中,我们可以通过聚类分析观察使用聚类算法后获得一些有价值的信息,其中会涉及许多数学理论与实际计算。
主要有以下几类算法:
K-Means(k-平均或k-均值)是普遍知名度最高的一种聚类算法,在许多有关数据科学和机器学习的课程中经常出现。
Mean shift算法,又称均值漂移算法,这是一种基于核密度估计的爬山算法,适用于聚类、图像分割、跟踪等
DBSCAN是一种基于密度的聚类算法,它不需要输入要划分的聚类个数,对聚类的形状没有偏倚。
层次聚类会将每个数据点视为单个聚类,然后连续合并成对的聚类,直到所有聚类合并成包含所有数据点的单个聚类。

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。点击预约免费试听课。

Ⅲ 怎么学习用 R 语言进行数据挖掘

什么是R语言?应该如何开始学习/使用R语言呢?

学习R有几个月了,总算是摸着了一点门道。
写一些自己的心得和经验,方便自己进一步鼓捣R。如果有人看到我写的东西而得到了帮助,那就更好了。
什么是R?R的优点何在?
R是一个数据分析软件。简单点说,R可以看做MATLAB的“替代品”,而且具有免费开源的优势。R可以像MATLAB一样解决有关数值计算的问题,而且具有强大的数据处理,绘图功能。
R拥有大量的统计分析工具包,我的感觉是——只有我们没听说过的工具,绝对没有R没有的工具包。配合着各种各样的工具包,你可以毁灭任何关于数据和统计的问题。因为数据包的数量庞大,所以查找自己需要的数据包,可能很烦恼。
如果有以下技能,学R会很方便:
1.已经了解些高级程序语言(非常重要)
2.英语不坏
3.概率统计理论基础
4.看数据不头疼
5.看cmd or terminal 也不头疼
你需要一本适合你的R语言教材
我开始学习R的时候,找到了这个帖子

非常强大的关于R语言教材综述。我非常感谢原帖作者。你可以参考这个帖子选一本适合你的教材。
我这里在说一下我主要使用的几本教材的心得:
1. 统计建模与R软件(薛毅着):非常优秀的R语言入门教材,涵盖了所有R的基础应用&方法,示例代码也很优秀。作为一本中文的程序语言教材,绝对是最优秀的之一。但是要看懂这本书,还是需要“已经了解些高级程序语言”。PS:我亲爱的吉林大学图书馆,有两本该教材流通,我常年霸占一本。
2. R in Nutshell:从讲解内容上看,与上一本差别不大,在R语言的应用上都是比较初级的入门,但是有些R软件&语言上的特性,写得比薛毅老师的教材深刻。这本书最大的优点就是工具书,方便开始入门时候,对有些“模棱两可”的东西的查询。PS:我将这本书打印了出来,简单的从头到尾翻过,最大的用途就是像一本字典一样查询。
3. ggplot2 Elegant Graphics for Data:这是一本介绍如何使用ggplot2包,进行绘图的书。ggplot2包,非常强大的绘图工具,几乎可以操作任何图中的元素,而且是提供添加图层的方式让我们可以一步步的作图。提到ggplot2包,应该提到一个词——“潜力无穷”,每一个介绍
ggplot2的人,都会用这个形容词。这本书最大的作用也是当做一本绘图相关的工具书,书中讲解详细,细致,每个小参数的变动都会配图帮你理解。PS:这本书我也打印出来了,非常适合查询。
几个可以逐步提高R能力的网站
1.R-bloggers: 这里有关于R和数据的一切讨论,前沿的问题,基础的问题,应有尽有。可以说这些家伙们让R变得越来越强大。我RSS了这个网站,每天都看一下有什么我感兴趣的方法和话题,慢慢的积累一些知识,是一个很有意思的过程。
2.统计之都: 这是一个有大量R使用者交流的论坛,你可以上去提问题,总有好心人来帮助你的。
3.R客: 是关于R的一个博客,更新不快,偏重国内R的一些发展。
R的使用环境
如果你看见terminal or cmd就打怵的话,一定要使用Rstudio。Rstudio的优点是,集成了Rconsole、脚本编辑器、可视化的数据查询、历史命令、帮助查询等,还有的完美的脚本和console的互动。毕竟是可视化的界面,有许多按钮可以用。R 的脚本编辑器很蛋疼,就比记事本多了个颜色高亮吧,不适合编写脚本,但适合调试脚本。
最后,说一下,刚开始学习R或者其他什么语言,都有一个通病,就是一些小细节的不知道,或者是记得不清楚,往往一个蛋疼的bug就可以耗掉大量的时间,这是一个让人想砸电脑的过程。我往后,会在博客里记录一些让我蛋很疼的小细节。本文分为6个部分,分别介绍初级入门,高级入门,绘图与可视化,计量经济学,时间序列分析,金融等。
1.初级入门
《An Introction to R》,这是官方的入门小册子。其有中文版,由丁国徽翻译,译名为《R导论》。《R4Beginners》,这本小册子有中文版应该叫《R入门》。除此之外,还可以去读刘思喆的《153分钟学会R》。这本书收集了R初学者提问频率最高的153个问题。为什么叫153分钟呢?因为最初作者写了153个问题,阅读一个问题花费1分钟时间,全局下来也就是153分钟了。有了这些基础之后,要去读一些经典书籍比较全面的入门书籍,比如《统计建模与R软件》,国外还有《R Cookbook》和《R in action》,本人没有看过,因此不便评论。
最后推荐,《R in a Nutshell》。对,“果壳里面的R”!当然,是开玩笑的,in a Nutshell是俚语,意思大致是“简单的说”。目前,我们正在翻译这本书的中文版,大概明年三月份交稿!这本书很不错,大家可以从现在开始期待,并广而告知一下!
2.高级入门
读了上述书籍之后,你就可以去高级入门阶段了。这时候要读的书有两本很经典的。《Statistics with R》和《The R book》。之所以说这两本书高级,是因为这两本书已经不再限于R基础了,而是结合了数据分析的各种常见方法来写就的,比较系统的介绍了R在线性回归、方差分析、多元统计、R绘图、时间序列分析、数据挖掘等各方面的内容,看完之后你会发现,哇,原来R能做的事情这么多,而且做起来是那么简洁。读到这里已经差不多了,剩下的估计就是你要专门攻读的某个方面内容了。下面大致说一说。
3.绘图与可视化
亚里斯多德说,“较其他感觉而言,人类更喜欢观看”。因此,绘图和可视化得到很多人的关注和重视。那么,如何学习R画图和数据可视化呢?再简单些,如何画直方图?如何往直方图上添加密度曲线呢?我想读完下面这几本书你就大致会明白了。
首先,画图入门可以读《R Graphics》,个人认为这本是比较经典的,全面介绍了R中绘图系统。该书对应的有一个网站,google之就可以了。更深入的可以读《Lattice:Multivariate Data Visualization with R》。上面这些都是比较普通的。当然,有比较文艺和优雅的——ggplot2系统,看《ggplot2:Elegant Graphics for Data Analysis》。还有数据挖掘方面的书:《Data Mining with Rattle and R》,主要是用Rattle软件,个人比较喜欢Rattle!当然,Rattle不是最好的,Rweka也很棒!再有就是交互图形的书了,着名的交互系统是ggobi,这个我已经喜欢两年多了,关于ggobi的书有《Interactive and Dynamic Graphics for Data Analysis With R and GGobi》,不过,也只是适宜入门,更多更全面的还是去ggobi的主页吧,上面有各种资料以及包的更新信息!
特别推荐一下,中文版绘图书籍有《现代统计图形》。
4.计量经济学
关于计量经济学,首先推荐一本很薄的小册子:《Econometrics In R》,做入门用。然后,是《Applied Econometrics with R》,该书对应的R包是AER,可以安装之后配合使用,效果甚佳。计量经济学中很大一部分是关于时间序列分析的,这一块内容在下面的地方说。
5.时间序列分析
时间序列书籍的书籍分两类,一种是比较普适的书籍,典型的代表是:《Time Series Analysis and Its Applications :with R examples》。该书介绍了各种时间序列分析的经典方法及实现各种经典方法的R代码,该书有中文版。如果不想买的话,建议去作者主页直接下载,英文版其实读起来很简单。时间序列分析中有一大块儿是关于金融时间序列分析的。这方面比较流行的书有两本《Analysis of financial time series》,这本书的最初是用的S-plus代码,不过新版已经以R代码为主了。这本书适合有时间序列分析基础和金融基础的人来看,因为书中关于时间序列分析的理论以及各种金融知识讲解的不是特别清楚,将极值理论计算VaR的部分就比较难看懂。另外一个比较有意思的是Rmetrics推出的《TimeSeriesFAQ》,这本书是金融时间序列入门的东西,讲的很基础,但是很难懂。对应的中文版有《金融时间序列分析常见问题集》,当然,目前还没有发出来。经济领域的时间序列有一种特殊的情况叫协整,很多人很关注这方面的理论,关心这个的可以看《Analysis of Integrated and Cointegrated Time Series with R》。最后,比较高级的一本书是关于小波分析的,看《Wavelet Methods in Statistics with R》。附加一点,关于时间序列聚类的书籍目前比较少见,是一个处女地,有志之士可以开垦之!
6.金融
金融的领域很广泛,如果是大金融的话,保险也要被纳入此间。用R做金融更多地需要掌握的是金融知识,只会数据分析技术意义寥寥。我觉得这些书对于懂金融、不同数据分析技术的人比较有用,只懂数据分析技术而不动金融知识的人看起来肯定如雾里看花,甚至有人会觉得金融分析比较低级。这方面比较经典的书籍有:《Advanced Topics in Analysis of Economic and Financial Data Using R》以及《Modelling Financial Time Series With S-plus》。金融产品定价之类的常常要用到随机微分方程,有一本叫《Simulation Inference Stochastic Differential Equations:with R examples》的书是关于这方面的内容的,有实例,内容还算详实!此外,是风险度量与管理类。比较经典的有《Simulation Techniques in Financial Risk Management》、《Modern Actuarial Risk Theory Using R》和《Quantitative Risk Management:Concepts, Techniques and Tools》。投资组合分析类和期权定价类可以分别看《Portfolio Optimization with R》和《Option Pricing and Estimation of Financial Models with R》。
7.数据挖掘
这方面的书不多,只有《Data Mining with R:learing with case studies》。不过,R中数据挖掘方面的包已经足够多了,参考包中的帮助文档就足够了。

Ⅳ 零基础如何系统学习数据分析

【导读】随着大数据,人工智能的普及,数据分析也是越来越吃香了,市场人才需求量很大,吸引理论很多初学者和跨行的零基础小白,那么零基础如何系统学习数据分析?一起来看看吧!

什么是初学者?——如果解析学和数据科学对你来说是全新的领域,你也不知该行业的发展模式,而你又想在这个行业大展拳脚一番,那么初学者就是你。以下这些应该在你的计划之内。

1. R语言也好,Python语言也好,学习一门新的编程语言

我曾见到有同学同时学习R语言和Python语言,最后落得两手空空。这种做法是很致命的。你一定要沉下心来专攻一门。鉴于这两种语言都是开放源代码工具,所以在公司里都有广泛运用。Python被公认为最简单的编程语言,而R语言一直都是最受青睐的统计工具。学习哪一门的决定权在你,因为两个同等出色。

推荐课程:推荐R语言和Python入门课程《Python入门:数据挖掘实战》、《R语言入门》

2. 学习统计学和数学

统计学的内容全都是关于假设和数列,然而没有统计学和数学的知识你很难深入到数据行业里,这是数据科学家的重中之重。

3.一次性完成一门网络开放课程(最难执行)

大规模网络开放课程可以免费获取和学习,可这对你来说也是最难实现的诺言。很多学生通常一次性注册选修很多课程,结果一门也没有圆满完成。所以,你一定要一次专注一门课,完成之后再选下一门。

推荐课程:推荐R语言和python进阶课程:《R语言实战》、《Python进阶:数据挖掘算法》

4.了解业界动态,善于探索和发现

你要了解业内动态。我们生活在一个变化的世界,一夜之间事物就可能发生重大变化,今日和流行的技术明日就很可能面临淘汰。你一定要多与一些富有经验的专业人士、业内专家交流,预见未来的自己。

以上就是小编今天给大家整理发布的关于“零基础如何系统学习数据分析?”的相关内容,希望对大家有所帮助。

Ⅳ 如何通过自学,成为数据挖掘“高手”

基础篇:

1. 读书《Introction to Data Mining》,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人。另外可以用这本书做参考《Data Mining : Concepts and Techniques》。第二本比较厚,也多了一些数据仓库方面的知识。如果对算法比较喜欢,可以再阅读《Introction to Machine Learning》。

2. 实现经典算法。有几个部分:
a. 关联规则挖掘 (Apriori, FPTree, etc.)
b. 分类 (C4.5, KNN, Logistic Regression, SVM, etc.)
c. 聚类 (Kmeans, DBScan, Spectral Clustering, etc.)
d. 降维 (PCA, LDA, etc.)
e. 推荐系统 (基于内容的推荐,协同过滤,如矩阵分解等)
然后在公开数据集上测试,看实现的效果。可以在下面的网站找到大量的公开数据集:http://archive.ics.uci.e/ml/

3. 熟悉几个开源的工具: Weka (用于上手); LibSVM, scikit-learn, Shogun

4. 到 https://www.kaggle.com/ 上参加几个101的比赛,学会如何将一个问题抽象成模型,并从原始数据中构建有效的特征 (Feature Engineering).

到这一步的话基本几个国内的大公司都会给你面试的机会。

进阶篇:

1. 读书,下面几部都是大部头,但学完进步非常大。
a.《Pattern Recognition and Machine Learning》
b.《The Elements of Statistical Learning》
c.《Machine Learning: A Probabilistic Perspective》
第一本比较偏Bayesian;第二本比较偏Frequentist;第三本在两者之间,但我觉得跟第一本差不多,不过加了不少新内容。当然除了这几本大而全的,还有很多介绍不同领域的书,例如《Boosting Foundations and Algorithms》,《Probabilistic Graphical Models Principles and Techniques》;以及理论一些的《Foundations of Machine Learning》,《Optimization for Machine Learning》等等。这些书的课后习题也非常有用,做了才会在自己写Paper的时候推公式。

2. 读论文。包括几个相关会议:KDD,ICML,NIPS,IJCAI,AAAI,WWW,SIGIR,ICDM;以及几个相关的期刊:TKDD,TKDE,JMLR,PAMI等。跟踪新技术跟新的热点问题。当然,如果做相关research,这一步是必须的。例如我们组的风格就是上半年读Paper,暑假找问题,秋天做实验,春节左右写/投论文。

3. 跟踪热点问题。例如最近几年的Recommendation System,Social Network,Behavior Targeting等等,很多公司的业务都会涉及这些方面。以及一些热点技术,例如现在很火的Deep Learning。

4. 学习大规模并行计算的技术,例如MapRece、MPI,GPU Computing。基本每个大公司都会用到这些技术,因为现实的数据量非常大,基本都是在计算集群上实现的。

5. 参加实际的数据挖掘的竞赛,例如KDDCUP,或 https://www.kaggle.com/ 上面的竞赛。这个过程会训练你如何在一个短的时间内解决一个实际的问题,并熟悉整个数据挖掘项目的全过程。

6. 参与一个开源项目,如上面提到的Shogun或scikit-learn还有Apache的Mahout,或为一些流行算法提供更加有效快速的实现,例如实现一个Map/Rece平台下的SVM。这也是锻炼Coding的能力。

到这一步国内的大公司基本是想哪去哪,而且待遇也不差;如果英语好,去US那边的公司难度也不大了。

阅读全文

与如何系统学习数据挖掘相关的资料

热点内容
excel求和怎么设置数据不四舍五入 浏览:88
大创产品服务特色怎么写 浏览:625
冒险岛抵用交易扣多少 浏览:43
婴儿外出驱蚊什么产品好 浏览:653
理财产品功能有哪些 浏览:916
如何注册币圈交易网 浏览:281
哪里能学到真正的数据 浏览:961
如何打开lpc程序 浏览:601
印尼有哪些值得购买的产品 浏览:271
温州海鲜有哪些批发市场 浏览:517
酒庄有哪些产品或服务 浏览:779
新产品啤酒代理需要多少钱 浏览:756
微商代理怎么宣传 浏览:73
两列数据如何显示出来不同项 浏览:177
放大镜爆料小程序入口在哪里 浏览:795
怎么找维密代理 浏览:404
爱奇艺网剧有效分账数据如何查询 浏览:1000
航空公司为什么取消代理费 浏览:755
云手机如何代理 浏览:987
熟练程序员每分钟写多少代码 浏览:331