‘壹’ 数据中台和数据仓库的区别是什么
数据中台与数据仓库没有直接关系,在某个维度上他们为业务产生价值的形式有不同的侧重,数据中台距离业务更近,能更快速地响应业务和应用开发的需求,可追溯、更精准。
1、概念上的区别
数据中台:企业级的逻辑概念,体现企业 D2V(Data to Value)的能力。
数据仓库:一个相对具体的功能概念,是存储和管理一个或多个主题数据的集合。
2、应用上的区别
数据中台:距离业务更近,通过将数据服务化之后提供给业务系统,为业务提供速度更快的服务,不仅限于分析型场景,也适用于交易型场景,强调共享和复用;
数据仓库:支持管理决策分析,主要应用于BI;
3、价值上的区别
数据中台:建立在数据仓库和大数据平台上,是加速企业从数据到业务价值过程的中间层。数据中台将数据生产为一个个数据 API 服务,以更高效的方式为业务提供服务。
数据仓库:存储的数据大多是根据需求有针对性抽取的结构化历史数据,能够生成各类报表,但这些报表都无法实时产生,因此,尽管能提供部分业务价值,但不能直接影响业务。
数据仓库算产品,数据中台的精髓在于其机制,数据中台不是一个产品,而是一套体系,是一种组织架构,数据中台的开发和建设既可以建立企业数据仓库基础上,也可以建立在企业大数据平台基础上,区别就在于企业的数据应用场景是否多元化。
‘贰’ 如何区别数据库、数据中台、数据湖
数据湖、数据仓库和数据中台,他们并没有直接的关系,只是他们为业务产生价值的形式有不同的侧重。
一、区别:
数据湖作为一个集中的存储库,可以在其中存储任意规模的所有结构化和非结构化数据。在数据湖中,可以存储数据不需要对其进行结构化,就可以运行不同类型的分析。
数据仓库,也称为企业数据仓库,是一种数据存储系统,它将来自不同来源的结构化数据聚合起来,用于业务智能领域的比较和分析,数据仓库是包含多种数据的存储库,并且是高度建模的。
数据中台是一个承接技术,引领业务,构建规范定义的、全域可连接萃取的、智慧的数据处理平台,建设目标是为了高效满足前台数据分析和应用的需求。数据中台距离业务更近,能更快速的相应业务和应用开发的需求,可追溯,更精准。
二、关系:
数据湖、数据仓库更多地是面向不同对象的不同形态的数据资产。而数据中台更多强调的是服务于前台,实现逻辑、标签、算法、模型的复用沉淀。
数据中台像一个“数据工厂”,涵盖了数据湖、数据仓库等存储组件,随着数据中台的发展,未来很有可能数据湖和数据仓库的概念会被弱化。
三、小结:
数据空间持续增长,为了更好地发挥数据价值,未来数据技术趋于融合,同时也在不断创新。