导航:首页 > 数据处理 > 大数据资源池结构化数据能记多少

大数据资源池结构化数据能记多少

发布时间:2024-08-14 18:58:55

大数据的价值在于应用

大数据的价值在于应用
大数据,就是存储在各种存储介质中的海量的各种形态数据,具有5V特点,即:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。大数据之“大”,不仅在于其“大容量”,更在于其“大价值”,并已成为除人力、土地、财务、技术之外的另一种重要的资源。
建设现代化经济体系离不开大数据发展和应用。构建以数据为关键要素的数字经济,就要着力推动实体经济和数字经济融合发展,让大数据成为建设现代化经济体系的重要基石。
大数据是企业跨界融合发展的驱动力
作为一种资源,企业利用大数据,可以更加敏锐地感知周边的变化,更加深邃地洞察客户、消费者以及合作伙伴们的行为和变化趋势,更加精准地优化企业的运营,更加和谐地与商业伙伴一起开展协同创新。大数据正在重塑企业,重新定义行业,正成为跨界融合发展的驱动力。
以中华全国总工会在推动的“工惠驿家”为例,它以“互联网+”、大数据、物联网、人工智能等新一代信息技术,为行走在全国各地公路上的3000多万货运司机职工提供高频度、高黏度、普惠性服务。
货车运行在全国各地的公路上,通过车载智能终端,可以实时、全域采集道路、环境数据,可以准确分析出全国各条高速公路的流量分布、货物流向分布、空气环境状态等,为行车安全、道路管理、物流管理、环境治理提供决策依据。可以通过货车司机的驾驶习惯、生命体征数据,设计符合每个司机特征的保险方案;通过货运司机行为轨迹数据,设计贴近货运司机需求的休息、餐饮、盥洗、康乐、学习等为一体的司机驿站;可以通过司机对汽车的维修、更新,创造出智慧、人性化、风光电互补新动能的新概念货车;对围绕货车司机的生活资料和生产资料的配套服务,还可以衍生出包括金融服务在内的各种行业服务,为智能化货运物流宏观管理奠定基础。
随着可分析和使用数据的大量增加,通过对这些数据的挖掘、脱敏、脱密、分析、应用、叠加应用,可以发现新的知识,创造新的价值,带来“大知识”“大科技”“大服务”和“大发展”。数据将和企业的固定资产、人力资源一样,成为生产过程中的重要基本要素。
挖掘被淹没的数据价值
要使大数据真正产生价值,就必须要研究数据的关联、数据的聚类以及全样本问题。建立在相关关系分析法基础上的预测是大数据的核心,通过找出关联物并监控它,就能预测未来。
仍以“工惠驿家”项目为例,“人、车、货、路、工会”各种数据产生于公路物流的各个环节、产生于全国800多万个工会组织,数据量巨大,价值密度低,实时在线,多源异构。为了让大数据对服务货运司机和工会组织发挥作用,针对不同的应用场景,首先要找出与应用场景的关联。例如,紧急事故救援,可以按事故类型,找出主要关联,快速把人员信息、货物信息、时间、地点、救援设施、医疗机构、保险机构等与救援相关的数据关联起来,配合预案模型,及时实施救援方案。
数据聚类,是从大数据中发现价值必须面对的一个普遍性、基础性问题。比如上述救援,有多种救援设施及多个同城医疗机构,在数据分析、处理上可首先把与救援机构、医疗机构的数据聚类,再根据事故的类型、受伤的情况,选择出最优的救援和医疗服务方案,这样才能做到及时、高效。
传统的数据样本基础是采样的绝对随机性,随机样本带给我们的只能是事先预设问题的答案。大数据时代,全样本的数据成为现实,全样本数据带给我们视角上的宏观性与全面性,这将使我们可以站在更高的层级全貌看待问题,看见曾经被淹没的数据价值,发现藏匿在整体中有趣的细节,使我们获得从不同的角度更细致、更全面地观察研究数据的可能性,从而使得大数据的分析过程,成为发现过程和问题域的拓展过程。基于近乎全样本并实时获取的海量数据,不断积累并形成有着巨大价值的社会资源。
推动实体经济和数字经济融合发展
大数据产业的发展,离不开两个核心系统工程建设,即稳定、安全、可靠的数据基础系统工程和完善、成熟、领先的应用系统工程。
发展大数据的关键,是要有获得数据的能力和方法,获得的数据不仅要及时、完整、准确地存储下来,而且要及时、完整、准确地传输到数据需求者。有了数据,还必须有足够的计算能力,因此基础系统工程包括了数据采集、汇聚、传输、存储、计算资源、大数据应用平台、云计算平台、数据资源池、数据分析挖掘工具软件、数据产权管理、数据标准体系、数据安全体系等。
目前,各行各业的决策正在从“业务驱动”向“数据驱动”转变。通过对大数据的分析,可以使企业实时掌握市场动态并迅速做出应对,可以制定更加精准有效的营销策略,可以帮助企业为消费者提供更加及时和个性化的服务。在公共事业领域,大数据在促进经济发展、维护社会稳定等方面的重要作用已开始得以发挥。因此,大数据应用系统建设,是大数据作为重要资源作用的关键。
从2009年开始,润泽科技就一直在研究数据产业发展趋势,投资建设国际一流的高标准数据基础设施,成为京津冀最具活力的数据产业平台基地。2016年,润泽科技投资建设了京津冀大数据创新应用中心,并被列为京津冀大数据综合试验区重点工程。应用中心引入了前瞻性的大数据技术,集聚了具有代表性的大数据企业,旨在构建大数据创新应用中心,为实体经济和数字经济融合创建大数据应用服务平台,吸引了大批国内外顶尖的大数据人才。
京津冀大数据创新应用中心将展现全球最新的大数据应用技术,聚焦更好地解决社会问题、商业营销问题和科学技术问题,辅助政府实现经济调控、城市管理、疾病防控、灾害预警、舆情分析、预防犯罪等。通过大数据分析手段,预判未来的发展趋势,为政府治理和决策提供及时的数据分析,改变人们的思维和决策方式,实现价值创造并触发新的价值增长,促进大数据产业健康、绿色、良性发展。
当前,大数据应用进入了广泛而快速的发展阶段,我们要坚持以供给侧结构性改革为主线,加快发展数字经济,推动实体经济和数字经济融合发展,推动互联网、大数据、人工智能同实体经济深度融合,继续做好信息化和工业化深度融合这篇大文章。

❷ 什么叫大数据,与云计算有何关系。

1,大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产

2,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。

他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。

(2)大数据资源池结构化数据能记多少扩展阅读:

大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。

大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。

大数据的趋势:

趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

参考资料:网络-大数据网络-云数据

❸ 大数据、云计算、人工智能之间有什么样的关系

云计算最初的目标是对资源的管理,管理的主要是计算资源,网络资源,存储资源三个方面。想象你有一大堆的服务器,交换机,存储设备,放在你的机房里面,你最想做的事情就是把这些东西统一的管理起来,最好能达到当别人向你请求分配资源的时候(例如1核1G内存,10G硬盘,1M带宽的机器),能够达到想什么时候要就能什么时候要,想要多少就有多少的状态。

这就是所谓的弹性,俗话说就是灵活性。灵活性分两个方面,想什么时候要就什么时候要,这叫做时间灵活性,想要多少就要多少,这叫做空间灵活性。

这个神经元有输入,有输出,输入和输出之间通过一个公式来表示,输入根据重要程度不同(权重),影响着输出。

于是将n个神经元通过像一张神经网络一样连接在一起,n这个数字可以很大很大,所有的神经元可以分成很多列,每一列很多个排列起来,每个神经元的对于输入的权重可以都不相同,从而每个神经元的公式也不相同。当人们从这张网络中输入一个东西的时候,希望输出一个对人类来讲正确的结果。例如上面的例子,输入一个写着2的图片,输出的列表里面第二个数字最大,其实从机器来讲,它既不知道输入的这个图片写的是2,也不知道输出的这一系列数字的意义,没关系,人知道意义就可以了。正如对于神经元来说,他们既不知道视网膜看到的是美女,也不知道瞳孔放大是为了看的清楚,反正看到美女,瞳孔放大了,就可以了。

对于任何一张神经网络,谁也不敢保证输入是2,输出一定是第二个数字最大,要保证这个结果,需要训练和学习。毕竟看到美女而瞳孔放大也是人类很多年进化的结果。学习的过程就是,输入大量的图片,如果结果不是想要的结果,则进行调整。如何调整呢,就是每个神经元的每个权重都向目标进行微调,由于神经元和权重实在是太多了,所以整张网络产生的结果很难表现出非此即彼的结果,而是向着结果微微的进步,最终能够达到目标结果。当然这些调整的策略还是非常有技巧的,需要算法的高手来仔细的调整。正如人类见到美女,瞳孔一开始没有放大到能看清楚,于是美女跟别人跑了,下次学习的结果是瞳孔放大一点点,而不是放大鼻孔。

听起来也没有那么有道理,但是的确能做到,就是这么任性。

神经网络的普遍性定理是这样说的,假设某个人给你某种复杂奇特的函数,f(x):

不管这个函数是什么样的,总会确保有个神经网络能够对任何可能的输入x,其值f(x)(或者某个能够准确的近似)是神经网络的输出。

如果在函数代表着规律,也意味着这个规律无论多么奇妙,多么不能理解,都是能通过大量的神经元,通过大量权重的调整,表示出来的。

这让我想到了经济学,于是比较容易理解了。

我们把每个神经元当成社会中从事经济活动的个体。于是神经网络相当于整个经济社会,每个神经元对于社会的输入,都有权重的调整,做出相应的输出,比如工资涨了,菜价也涨了,股票跌了,我应该怎么办,怎么花自己的钱。这里面没有规律么?肯定有,但是具体什么规律呢?却很难说清楚。

基于专家系统的经济属于计划经济,整个经济规律的表示不希望通过每个经济个体的独立决策表现出来,而是希望通过专家的高屋建瓴和远见卓识总结出来。专家永远不可能知道哪个城市的哪个街道缺少一个卖甜豆腐脑的。于是专家说应该产多少钢铁,产多少馒头,往往距离人民生活的真正需求有较大的差距,就算整个计划书写个几百页,也无法表达隐藏在人民生活中的小规律。

基于统计的宏观调控就靠谱的多了,每年统计局都会统计整个社会的就业率,通胀率,GDP等等指标,这些指标往往代表着很多的内在规律,虽然不能够精确表达,但是相对靠谱。然而基于统计的规律总结表达相对比较粗糙,比如经济学家看到这些统计数据可以总结出长期来看房价是涨还是跌,股票长期来看是涨还是跌,如果经济总体上扬,房价和股票应该都是涨的。但是基于统计数据,无法总结出股票,物价的微小波动规律。

基于神经网络的微观经济学才是对整个经济规律最最准确的表达,每个人对于从社会中的输入,进行各自的调整,并且调整同样会作为输入反馈到社会中。想象一下股市行情细微的波动曲线,正是每个独立的个体各自不断交易的结果,没有统一的规律可循。而每个人根据整个社会的输入进行独立决策,当某些因素经过多次训练,也会形成宏观上的统计性的规律,这也就是宏观经济学所能看到的。例如每次货币大量发行,最后房价都会上涨,多次训练后,人们也就都学会了。

然而神经网络包含这么多的节点,每个节点包含非常多的参数,整个参数量实在是太大了,需要的计算量实在太大,但是没有关系啊,我们有大数据平台,可以汇聚多台机器的力量一起来计算,才能在有限的时间内得到想要的结果。

于是工智能程序作为SaaS平台进入了云计算。

网易将人工智能这个强大的技术,应用于反垃圾工作中,从网易1997年推出邮箱产品开始,我们的反垃圾技术就在不停的进化升级,并且成功应用到各个亿量级用户的产品线中,包括影音娱乐,游戏,社交,电商等产品线。比如网易新闻、博客相册、云音乐、云阅读、有道、BOBO、考拉、游戏等产品。总的来说,反垃圾技术在网易已经积累了19年的实践经验,一直在背后默默的为网易产品保驾护航。现在作为云平台的SaaS服务开放出来。

回顾网易反垃圾技术发展历程,大致上我们可以把他分为三个关键阶段,也基本对应着人工智能发展的三个时期:

第一阶段主要是依赖关键词,黑白名单和各种过滤器技术,来做一些内容的侦测和拦截,这也是最基础的阶段,受限于当时计算能力瓶颈以及算法理论的发展,第一阶段的技术也能勉强满足使用。

第二个阶段时,基于计算机行业里有一些更新的算法,比如说贝叶斯过滤(基于概率论的算法),一些肤色的识别,纹理的识别等等,这些比较优秀成熟的论文出来,我们可以基于这些算法做更好的特征匹配和技术改造,达到更优的反垃圾效果。

最后,随着人工智能算法的进步和计算机运算能力的突飞猛进,反垃圾技术进化到第三个阶段:大数据和人工智能的阶段。我们会用海量大数据做用户的行为分析,对用户做画像,评估用户是一个垃圾用户还是一个正常用户,增加用户体验更好的人机识别手段,以及对语义文本进行理解。还有基于人工智能的图像识别技术,更准确识别是否是色情图片,广告图片以及一些违禁品图片等等。

❹ 大数据和云计算有什么区别

大数据和云计算是当今信息技术的两大热门领域,它们之间存在明显的区别。


大数据主要关注的是数据的收集、存储、处理和分析,其核心在于从海量数据中提取有价值的信息。大数据技术的特点是能够处理各种类型的数据,包括结构化数据(如数据库表格)和非结构化数据(如文本、图像、视频等)。例如,在电商平台上,用户的每一次点击、浏览和购买行为都会产生大量数据。通过大数据技术,企业可以分析这些数据,了解用户的偏好和消费习惯,从而制定更精准的营销策略。


云计算则是一种计算服务模式,它提供了可弹性扩展的计算资源,允许用户根据需求动态地调整计算能力。云计算的主要特点包括按需付费、资源池化、快速弹性扩展等。这意味着,企业或个人无需购买和维护昂贵的硬件设备,只需通过云服务提供商租用所需的计算资源,就能轻松应对业务高峰或临时性的计算需求。例如,一家初创公司可以利用云计算服务,在初期以较低的成本快速搭建起自己的IT基础设施,随着业务的增长再逐步扩展资源。


总的来说,大数据和云计算在功能和应用场景上各有侧重。大数据着眼于数据的价值挖掘,而云计算则侧重于计算资源的灵活配置。在实际应用中,这两者经常是相辅相成的。例如,云计算平台可以为大数据分析提供强大的计算能力支持,而大数据分析的结果又可以反过来优化云计算资源的分配和使用。


尽管大数据和云计算在某些方面存在交集,但它们各自承担的角色和发挥的作用是不可替代的。理解这两者之间的区别,有助于我们更好地把握信息技术的发展趋势,并充分利用这些技术来推动社会的进步和发展。

阅读全文

与大数据资源池结构化数据能记多少相关的资料

热点内容
小云电商小程序多少钱 浏览:766
润滑油代理费用多少 浏览:63
技能交易平台哪个最好 浏览:488
市场废铜价格多少钱一吨 浏览:978
竹叶的颜色怎么调数据 浏览:728
统计数据用什么键盘好用 浏览:130
江苏会计代理记账需要多少钱 浏览:975
程序员那么可爱多少集男主追妻 浏览:763
铣工零件技术要求分析怎么写 浏览:588
税务网站怎么更改交易内容 浏览:559
花椒最大市场在哪里 浏览:795
数据湖的概念由什么厂商提出的 浏览:885
程序员怎么调到非外包公司 浏览:285
咪咕小程序在哪里打开 浏览:765
苹果哪个是程序号 浏览:13
下属等领导怎么发信息 浏览:504
毕业设计怎么做微信小程序 浏览:53
怎么查内幕交易 浏览:747
java程序怎么打开 浏览:435
汽车正时数据流正常是多少度 浏览:54