‘壹’ 从网站抓取数据的3种最佳方法
1.使用网站API
许多大型社交媒体网站,例如Facebook,Twitter,Instagram,StackOverflow,都提供API供用户访问其数据。有时,您可以选择官方API来获取结构化数据。如下面的Facebook Graph API所示,您需要选择进行查询的字段,然后订购数据,执行URL查找,发出请求等。
2.建立自己的搜寻器
但是,并非所有网站都为用户提供API。某些网站由于技术限制或其他原因拒绝提供任何公共API。有人可能会提出RSS提要,但是由于限制了它们的使用,因此我不会对此提出建议或发表评论。在这种情况下,我想讨论的是我们可以自行构建爬虫来处理这种情况。
3.利用现成的爬虫工具
但是,通过编程自行爬网网站可能很耗时。对于没有任何编码技能的人来说,这将是一项艰巨的任务。因此,我想介绍一些搜寻器工具。
Octoparse是一个功能强大的基于Visual Windows的Web数据搜寻器。用户使用其简单友好的用户界面即可轻松掌握此工具。要使用它,您需要在本地桌面上下载此应用程序。
http://Import.io也称为Web搜寻器,涵盖所有不同级别的搜寻需求。它提供了一个魔术工具,可以将站点转换为表格,而无需任何培训。如果需要抓取更复杂的网站,建议用户下载其桌面应用程序。构建完API后,它们会提供许多简单的集成选项,例如Google Sheets,http://Plot.ly,Excel以及GET和POST请求。当您认为所有这些都带有终身免费价格标签和强大的支持团队时,http://import.io无疑是那些寻求结构化数据的人的首要选择。它们还为寻求更大规模或更复杂数据提取的公司提供了企业级付费选项。
关于从网站抓取数据的3种最佳方法,该如何下手的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
‘贰’ 怎么样从网络上获取所需要的数据
关于从网页上获取数据
网页上常包含适合在 Microsoft Excel 中进行分析的信息。例如,可以在 Excel 中使用直接从网页上获取的信息分析股票报价。根据需要,可以检索可刷新的数据(即可以借助网页上的最新信息在 Excel 中更新数据),或者可以从网页上获取数据并将其静态保存在工作表中。
1.使用 Web 查询获取可刷新的数据
借助 Web 查询,可以检索网页上的数据,如单个表格、多个表格或全部文本,然后利用 Excel 中的工具和功能对这些数据进行分析。只需单击一下按钮,即可方便地借助网页上的最新信息刷新数据。例如,可以从公共网页上检索和更新股票报价,或者从公司的网页上检索和更新销售信息表格。
Web 查询可检索网页上的数据并将其返回到 Excel 中进行分析。
2.复制和粘贴静态数据或可刷新的查询
可以使用熟悉的复制和粘贴命令将网页上的数据复制到 Excel 工作表。将网页上的数据粘贴到 Excel 中时,通过单击“粘贴选项” 可静态保存数据或者使其可以刷新。
3.从 Microsoft Office Web Components 中导出数据
在浏览器中,可以使用“导出到 Microsoft Excel”工具栏按钮从交互式电子表格和数据透视表列表中导出数据。有关详细信息,请参阅数据透视表列表或电子表格的“Microsoft Office Web Component 帮助”。
4.打开 HTML、MHTML 或 XML 文件
在 Excel 中,使用“文件”菜单上的“打开”命令可打开任意一个 HTML 文件、MTHML 文件或格式更完善的 XML 文件。
当打开一个 HTML 或 MHTML 文件时,将获得整个网页,但可能丢失一些格式、脚本、.gif 图像文件(只在 HTML 中)或单个单元格中的数据列表。
当打开一个 XML 文件时,可以选择应用一个还是多个引用样式表。
‘叁’ 如何通过网络爬虫获取网站数据
这里以python为例,简单介绍一下如何通过python网络爬虫获取网站数据,主要分为静态网页数据的爬埋山差取和动态网页数据的爬取,实验环境win10+python3.6+pycharm5.0,主要内容如下:
静态网页数据
这里的数据都嵌套在网页源码中,所以直接requests网页源码进行解析就行,下面我简单介绍一下,这里以爬取糗事网络上的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的字段包括昵称、内容、好笑数和评论数:
接着查看网页源码,如下,可以看的出来,所有的数据都嵌套在网页中:
2.然后针对以上网页结构,我们就可以直接编写爬虫代码,解析网页并提取出我们需要的数据了,测试代码如下,非常简单,主要用到requests+BeautifulSoup组合,其中requests用于获取网页源码,BeautifulSoup用于解析网页提取数据:
点击运行这个程序,效果如下,已经成功爬取了到我们需要的数据:
动态网页数据
这里的数据都没有在网页源码中(所以直接请求页面是获取不到任何数据的),大部分情况下都是存储在一唯唯个json文件中,只有在网页更新的时候,才会加载数据,下面我简单介绍一下这种方式,这里以爬取人人贷上面的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的数据包括年利率,借款标题,期限,金额和进度:
接着按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找打动态加载的json文件,如下,也就是我们需要爬弯皮取的数据:
2.然后就是根据这个json文件编写对应代码解析出我们需要的字段信息,测试代码如下,也非常简单,主要用到requests+json组合,其中requests用于请求json文件,json用于解析json文件提取数据:
点击运行这个程序,效果如下,已经成功爬取到我们需要的数据:
至此,我们就完成了利用python网络爬虫来获取网站数据。总的来说,整个过程非常简单,python内置了许多网络爬虫包和框架(scrapy等),可以快速获取网站数据,非常适合初学者学习和掌握,只要你有一定的爬虫基础,熟悉一下上面的流程和代码,很快就能掌握的,当然,你也可以使用现成的爬虫软件,像八爪鱼、后羿等也都可以,网上也有相关教程和资料,非常丰富,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
‘肆’ 数据分析中数据获取的方式有哪些
方式1、外部购买数据
有很多公司或者平台是专门做数据收集和分析的,企业会直接从那里购买数据或者相关服务给数据分析师,这是一种常见的获取数据的方式之一。
方式2、网络爬取数据
除了购买数据以外,数据分析师还可以通过网络爬虫从网络上爬取数据。比如大家可以利用网络爬虫爬取一些需要的数据,再将数据存储称为表格的形式。
方式3、免费开源数据
外部购买数据要花费一定的资金,网络爬取对技术又有一定的要求,有没有什么办法能又省力又省钱的采集数据呢?当然有,互联网上有一些“开放数据”来源,如政府机构、非营利组织和企业会免费提供一些数据,根据需求你可以免费下载。
方式4、企业内部数据
了解了企业外部数据的来源,其实企业内部本身就会产生很多数据提供给我们分析,我们一起来了解一下吧。前面说了,内部数据通常包含销售数据、考勤数据、财务数据等。
关于数据分析中数据获取的方式有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。