导航:首页 > 数据处理 > 数据挖掘分析工具有哪些

数据挖掘分析工具有哪些

发布时间:2022-01-25 11:07:35

A. 常用的数据挖掘工具有哪些

市场上的数据挖掘工具一般分为三个组成部分:a、通用型工具;b、综合/DSS/OLAP数据挖掘工具;c、快速发展的面向特定应用的工具。常用的数据挖掘工具有很多,例如:

1、思迈特软件Smartbi的大数据挖掘平台:通过深度数据建模,为企业提供预测能力支持文本分析、五大类算法和数据预处理,并为用户提供一站式的流程式建模、拖拽式操作和可视化配置体验。

2、Enterprise Miner 这是一种在我国的企业中得到采用的数据挖掘工具,比较典型的包括上海宝钢配矿系统应用和铁路部门在春运客运研究中的应用。SAS Enterprise Miner是一种通用的数据挖掘工具,按照“抽样——探索——转换——建模——评估”的方法进行数据挖掘。可以与SAS数据仓库和OLAP集成,实现从提出数据、抓住数据到得到解答的“端到端”知识发现。

3、SPSS Clementine是一个开放式数据挖掘工具,曾两次获得英国政府SMART 创新奖,它不但支持整个数据挖掘流程,从数据获取、转化、建模、评估到最终部署的全部过程,还支持数据挖掘的行业标准——CRISP-DM。

更多的了解我们可以到思迈特软件Smartbi了解一下。 在金融行业,全球财富500强的10家国内银行中,有8家选用了思迈特软件Smartbi;国内12家股份制银行,已覆盖8家;国内六大银行,已签约4家;国内排名前十的保险公司已经覆盖6家;国内排名前十的证券公司已经覆盖5家。

B. 数据分析 数据挖掘 工具有哪些

在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
探索性数据分析是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国着名统计学家约翰·图基(John Tukey)命名。
定性数据分析又称为“定性资料分析”、“定性研究”或者“质性研究资料分析”,是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。

C. 常见的大数据分析工具有哪些

大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够操作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash

D. 国内有哪些比较好的数据挖掘工具呢

国内比较好的数据挖掘工具有很多,比如思迈特软件Smartbi。

思迈特软件Smartbi是中国自助型BI领导者,它简单易用,人人可用。可以解放IT部门,让业务人员自主、灵活、多样的可视化分析,无需任何技术,数秒实现数据可视化。借助思迈特软件Smartbi,企业可以充分发掘数据价值,告别数据孤岛。思迈特软件Smartbi性能优异,亿级数据,秒级响应,实施周期以星期计算,支持PC、移动端、大屏多种终端。

思迈特软件Smartbi大数据分析工具的特点:

1.灵动的可视分析,零编码、可视化数据分析,即时分享数据见解。几分钟生成分析结果,数秒内发现知识的真知灼见。而且用户在接收到他人分享的数据后,享有与原作者一样的分析功能,大大提升了知识转移和数据分析的效率。

2.提供切换自如的多屏体验,他拥有移动端、普通电脑端、大屏显示等多种终端展示解决方案,让用户随时随地对关心的数据了如指掌。

思迈特软件Smartbi通过深度数据建模,为企业提供预测能力支持文本分析、五大类算法和数据预处理,并为用户提供一站式的流程式建模、拖拽式操作和可视化配置体验。思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

E. 数据分析师使用的工具有哪些

EXCEL、SQL为最为需求侧提到最多的数据分析工具。⽽SPSS、SAS、R、PYTHON次之,而大数据工具如HADDOP等也提到较多。

业务数据分析中,主要以办公软件、数据处理、统计工具为主;EXCEL在业务数据分析被提及相当多次。数据处理工具SQL也被提及很多次,SAS、SPSS等统计分析软件是业务分析的流行工具。

数据挖掘工具中,包括了数据分析工具与平台开发⼯工具:PYTHON在数据挖掘中被提及最多,R其次;数据挖掘类岗位需求信息多次提到HADOOP、SPARK、JAVA等平台开发工具;数据处理⼯工具SQL被提及较多。

数据分析工具上,主要包括了平台开发工具与分析工具:HADOOP、SPARK、JAVA等⼤大数据平台开发工具需求最为旺盛;PTYHON、R在大数据分析中提及;很多传统统计分析工具如SPSS、SAS等被提到得并不多。

F. 学习数据挖掘一般要学哪些软件和工具

1、WEKA

WEKA 原生的非 Java 版本主要是为了分析农业领域数据而开发的。该工具基于 Java 版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与 RapidMiner 相比优势在于,它在 GNU 通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。

WEKA 支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。添加序列建模后,WEKA 将会变得更强大,但目前不包括在内。

2、RapidMiner

该工具是用 Java 语言编写的,通过基于模板的框架提供先进的分析技术。该款工具最大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。另外,除了数据挖掘,RapidMiner 还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自 WEKA(一种智能分析环境)和 R 脚本的学习方案、模型和算法。

RapidMiner 分布在 AGPL 开源许可下,可以从 SourceForge 上下载。SourceForge 是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括维基网络使用的 MediaWiki。

3、NLTK

当涉及到语言处理任务,没有什么可以打败 NLTK。NLTK 提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。

而您需要做的只是安装 NLTK,然后将一个包拖拽到您最喜爱的任务中,您就可以去做其他事了。因为它是用 Python 语言编写的,你可以在上面建立应用,还可以自定义它的小任务。

4、Orange

Python 之所以受欢迎,是因为它简单易学并且功能强大。如果你是一个 Python 开发者,当涉及到需要找一个工作用的工具时,那么没有比 Orange 更合适的了。它是一个基于 Python 语言,功能强大的开源工具,并且对初学者和专家级的大神均适用。

此外,你肯定会爱上这个工具的可视化编程和 Python 脚本。它不仅有机器学习的组件,还附加有生物信息和文本挖掘,可以说是充满了数据分析的各种功能。

5、KNIME

数据处理主要有三个部分:提取、转换和加载。 而这三者 KNIME 都可以做到。 KNIME 为您提供了一个图形化的用户界面,以便对数据节点进行处理。它是一个开源的数据分析、报告和综合平台,同时还通过其模块化数据的流水型概念,集成了各种机 器学习的组件和数据挖掘,并引起了商业智能和财务数据分析的注意。

KNIME 是基于 Eclipse,用 Java 编写的,并且易于扩展和补充插件。其附加功能可随时添加,并且其大量的数据集成模块已包含在核心版本中。


6、R-Programming

如果我告诉你R项目,一个 GNU 项目,是由 R(R-programming简称,以下统称R)自身编写的,你会怎么想?它主要是由 C 语言和 FORTRAN 语言编写的,并且很多模块都是由 R 编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。

R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了 R 的知名度。除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。

G. 好用的数据分析工具有哪些

好用的数据分析工具有很多,比如广州思迈特软件Smartbi有限公司(思迈特软件Smartbi)。

从取数、分析到报告,思迈特软件Smartbi提供一体化的闭环工作方式。Office插件等同于一个媒介,安装此插件可以将思迈特软件Smartbi的报表资源添加到Word、PPT、WPS文字或WPS演示中,进而可以在Word、PPT、WPS文字或WPS演示中引用思迈特软件Smartbi中的资源,生成带有参数的动态分析报告。

Office插件安装简单,与Word、PPT、WPS文字和WPS演示兼容良好,使用方便。

思迈特软件Smartbi配备专业技术支持团队,资深技术支持经验,提供思迈特软件Smartbi产品的在线支持服务。用户介入产品使用过程中,企业针对每位客户的特点和偏好,一对一的提供个性化产品和服务,用户可获得属性强烈的报表,或获得与其个人需求匹配的定制产品或服务。

对于数据分析工具我比较推荐思迈特软件Smartbi,思迈特软件Smartbi合了BI定义的所有阶段,对接各种业务数据库、数据仓库和大数据分析平台,进行加工处理、分析挖掘和可视化展现;满足所有用户的各种数据分析应用需求,如大数据分析、可视化分析、探索式分析、企业报表平台、应用分享等等。

数据分析工具靠不靠谱,来试试Smartbi,思迈特软件Smartbi经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。

思迈特软件Smartbi个人用户全功能模块长期免费试用
马上免费体验:Smartbi一站式大数据分析平台

H. 大数据分析的工具有哪些

1、Hadoop


Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。


2、HPCC


HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。


3、Storm


Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。


4、Apache Drill


为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google's Dremel.


据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。


5、RapidMiner


RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。


6、Pentaho BI


Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

I. 常用数据挖掘工具有哪些

前段时间国际权威市场分析机构IDC发布了《中国人工智能软件及应用(2019下半年)跟踪》报告。在报告中,美林数据以11%的市场份额位居中国机器学习开发平台市场榜眼,持续领跑机器学习平台市场。在此之前,2019年IDC发布的《IDC MarketScape™:中国机器学习开发平台市场评估》中,美林数据就和BAT、微软、AWS等知名一线厂商共同跻身领导者象限,成为中国机器学习开发平台市场中的领导企业之一。

以上都是对美林数据Tempo人工智能平台(简称:TempoAI)在机器学习开发平台领域领先地位的认可,更说明美林数据在坚持自主创新、深耕行业应用道路上的持续努力,得到了业界的广泛认可,并取得了优异成绩。

点此了解详情

Tempo人工智能平台(TempoAI)为企业的各层级角色提供了自助式、一体化、智能化的分析模型构建能力。满足用户数据分析过程中从数据接入、数据处理、分析建模、模型评估、部署应用到管理监控等全流程的功能诉求;以图形化、拖拽式的建模体验,让用户无需编写代码,即可实现对数据的全方位深度分析和模型构建。实现数据的关联分析、未来趋势预测等多种分析,帮助用户发现数据中隐藏的关系及规律,精准预测“未来将发生什么”。

产品特点:

1 极简的建模过程

TempoAI通过为用户提供一个机器学习算法平台,支持用户在平台中构建复杂的分析流程,满足用户从大量数据(包括中文文本)中挖掘隐含的、先前未知的、对决策者有潜在价值的关系、模式和趋势的业务诉求,从而帮助用户实现科学决策,促进业务升级。整个分析流程设计基于拖拽式节点操作、连线式流程串接、指导式参数配置,用户可以通过简单拖拽、配置的方式快速完成挖掘分析流程构建。平台内置数据处理、数据融合、特征工程、扩展编程等功能,让用户能够灵活运用多种处理手段对数据进行预处理,提升建模数据质量,同时丰富的算法库为用户建模提供了更多选择,自动学习功能通过自动推荐最优的算法和参数配置,结合“循环行”功能实现批量建模,帮助用户高效建模,快速挖掘数据隐藏价值。

2 丰富的分析算法

TempoAI集成了大量的机器学习算法,支持聚类、分类、回归、关联规则、时间序列、综合评价、协同过滤、统计分析等多种类型算法,满足绝大多数的业务分析场景;支持分布式算法,可对海量数据进行快速挖掘分析;同时内置了美林公司独创算法,如视觉聚类、L1/2稀疏迭代回归/分类、稀疏时间序列、信息抽取等;支持自然语言处理算法,实现对海量文本数据的处理与分析;支持深度学习算法及框架,为用户分析高维海量数据提供更加强大的算法引擎;支持多种集成学习算法,帮助用户提升算法模型的准确度和泛化能力。

3 智能化的算法选择

TempoAI内置自动择参、自动分类、自动回归、自动聚类、自动时间序列等多种自动学习功能,帮助用户自动选择最优算法和参数,一方面降低了用户对算法和参数选择的经验成本,另一方面极大的节省用户的建模时间成本。

4 全面的分析洞察

为了帮助用户更好、更全面的观察分析流程各个环节的执行情况, TempoAI提供了全面的洞察功能,通过丰富详实的洞察内容,帮助用户全方位观察建模过程任意流程节点的执行结果,为用户开展建模流程的改进优化提供依据,从而快速得到最优模型,发现数据中隐含的业务价值。

5 企业级的成果管理与应用能力

挖掘分析成果,不仅仅止步于模型展示,TempoAI全面支撑成果管理与应用,用户在完成挖掘流程发布后,可基于成果构建服务或调度任务等应用,在成果管理进行统一分类及管理,可根据业务需求选择应用模式:调度任务、异步服务、同步服务、流服务及本地化服务包,满足工程化的不同诉求。提供统一的成果分类统计、在线数量变化趋势、日活跃数量变化趋势、调用热度、失败率排名等成果统计功能,同时提供所有服务的统一监测信息,包括服务的调用情况及运行情况。帮助用户高效便捷的管理成果、利用成果及监测成果。

6 完善的断点缓存机制

TempoAI提供节点的断点缓存机制,包括开启缓存、关闭缓存、清除缓存、从缓存处执行、执行到当前节点、从下一个节点开始执行等功能,为用户在设计端调试建模流程提供了高效便捷的手段,显着提升用户的建模效率。

7 灵活的流程版本及模型版本管理机制

为了方便用户更好的对多次训练产生的挖掘流程和模型进行管理,平台提供了流程版本及模型版本管理功能,支持用户对流程的版本及模型的版本进行记录和回溯,满足用户对流程及模型的管理诉求,提升用户建模体验。

8 跨平台模型迁移及融合能力

TempoAI平台支持PMML文件的导入和导出功能,可以实现跨平台模型之间的迁移和融合,利于用户进行历史模型的迁移,实现用户在不同平台的模型成果快速共享,提升成果的复用性。

9 丰富的行业应用案例

TempoAI支持应用模板功能,针对不同行业的痛点内置了丰富的分析案例,“案例库”一方面为用户学习平台操作和挖掘分析过程提供指导,另一方面可以为用户提供直接或间接的行业分析解决方案。

10 流数据处理功能

TempoAI提供流数据处理功能,包括kafka输入(流)、kafka输出(流)、SQL编辑(流)、数据连接(流)、数据水印(流),满足用户对实时流数据进行处理的需求。

11 一键式建模能力

TempoAI支持一键式建模功能,用户只需输入数据,该功能可以自动完成数据处理、特征工程、算法及参数选择及模型评估等环节。节省了用户AI建模的时间,提升了建模效率。让用户将有限的精力更多的关注到业务中,将建模工作交给平台,从而进一步降低AI建模的门槛。

J. 数据分析的常见工具有哪些

1、数据处理工具:Excel


数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。


2、数据库:MySQL


Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。


3、数据可视化:Tableau & Echarts


如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

阅读全文

与数据挖掘分析工具有哪些相关的资料

热点内容
查专业数据去哪里 浏览:352
累计数据如何筛选 浏览:174
亚运村汽车交易市场怎么走 浏览:903
微信小程序斗地主福券有什么用 浏览:346
陶瓷信息网站哪里找 浏览:192
哪个软件可以修改别人发的信息 浏览:661
代理人怎么吃回扣 浏览:446
人脑能装多少数据 浏览:708
自己开店如何办理会员小程序 浏览:19
上游五氟丙烯产品有哪些 浏览:339
蓬安工商代理需要多少钱 浏览:661
没有下房产证的房屋怎么交易 浏览:844
代理素颜霜哪个牌子好 浏览:585
如何看深股通交易情况 浏览:523
导入的数据哪里找 浏览:580
沈阳发改委菜价和市场菜价哪个贵 浏览:610
马鞍山代理记账多少钱 浏览:127
财付通深交易指什么 浏览:675
基迪奥技术支持如何 浏览:249
保险产品停售带来什么 浏览:64