A. 推送是哪里来的 大数据
关于数据来源,互联网及物联网是产生并承载大数据的基地。互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。如阿里,网络,腾讯等。
物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源都是大数据金矿,还有一些企业,在业务中也积累了许多数据,如房地产交易、大宗商品价格、特定群体消费信息等。当然还有另外一类是政府部门掌握的数据资源。
详细介绍:
目前围绕Hadoop体系的大数据架构包括:
传统大数据架构
数据分析的业务没有发生任何变化,但是因为数据量、性能等问题导致系统无法正常使用,需要进行升级改造,那么此类架构便是为了解决这个问题。依然保留了ETL的动作,将数据经过ETL动作进入数据存储。
数据分析需求依旧以BI场景为主,但是因为数据量、性能等问题无法满足日常使用。
流式架构
在传统大数据架构的基础上,流式架构数据全程以流的形式处理,在数据接入端将ETL替换为数据通道。经过流处理加工后的数据,以消息的形式直接推送给了消费者。
存储部分在外围系统以窗口的形式进行存储。适用于预警、监控、对数据有有效期要求的情况。
B. 京东挖掘大数据金矿 让用户体验更有“数”
京东挖掘大数据金矿 让用户体验更有“数”
在刚刚结束的贵阳大数据产业博览会上,京东向外界展示了全价值链电商大数据的应用价值,所谓全价值链指的是从商品采购、库房、配送、售后、客服等整个链条产生的数据。有了这套完整的数据源,京东可以获得最接近用户真实需求的数据,进而进行深度的数据价值挖掘。
京东大数据部副总经理邢志峰认为:“京东的大数据应用理念是为用户创造价值,给用户带来极致的用户体验。大数据本身就是一个以价值创造为导向的技术,如果技术不能够给用户或者企业带来价值,它本身的存在意义就不大了。”
价值和含金量颇高的京东大数据“金矿”
邢志峰谈到,在PC时代中国的大数据产业一直在扮演着追随者的角色,与西方的先进技术相比存在差距。到了移动互联网时代,这种差距已经被缩短,甚至不相上下,因为从移动互联网开始,国内的技术领域始终处于这股潮流当中,从社交软件就能看到,国内的用户体量并不比FaceBook等国际厂商低。这就为“互联网+”时代的大数据发展营造了良好的生态环境。中国具有全世界最大的人口基数,同样数据量也是全世界最大的,换句话说,在如此庞大的数据背后,它所蕴含的价值和含金量也是最高的。而作为电商,可以说处于大数据发展的风口。
京东的大数据发展始终坚持双向驱动为原则,也就是业务驱动+技术驱动。在业务上始终围绕用户体验为导向,同时积极探索大数据技术,进行技术储备。随着技术的成熟和业务的发展,京东在去年承接了一些国家级大数据项目,北京市的大数据工程实验室也落户京东。此举意在向社会输出价值来提升大数据应用成果的转化。
据了解,京东目前70%的数据源于自身,此外通过与腾讯、易车、途牛等伙伴的合作,使数据类型更加丰富。“但合作的原则是不侵害用户的隐私数据,在保证数据安全的前提下,”邢志峰强调:“大数据层面的数据安全指通过技术手段确保数据在存储、传输、展示等环节的数据信息安全。京东在这方面采取了多种保护措施,例如在数据传输上,根据HTTPS协议进行算法加密,在存储上京东开发了一套加密算法,使得数据即使被盗也无法还原。”
用大数据提升用户体验创造更多价值
利用大数据,京东在不断的丰富自身的业务,追求极致的用户体验。例如,京东通过用户画像等工具为用户提供了更精准和有效的商品推荐,帮助用户发现他们可能会喜爱的产品;针对部分商品,京东可以通过大数据挖掘,对用户的消费需求进行预判,提前在离用户最近的社区储备商品,这样能够保证在用户下单之后的2个小时之内将商品送达。这样极速的送货体验,如果没有基于大数据对用户需求的挖掘是无法做到的。
京东除了将大数据用于自身业务提升用户体验之外,也在开放相关的大数据服务。此前与复旦大学合作建立的首个“互联网+”量化追踪体系,力求从消费者的信心与满意度、行业发展的状态与景气度以及基础设施的发展现状三个方面综合反映当前信息经济消费情况,为政府政策、行业发展、消费者行为模式等提供重要的参考价值。而京东的人工智能JIMI机器人,未来也会将服务开放给更多的中小企业,减少他们在客服方面的成本。
“互联网+”时代,数据是做好用户体验最精准的依据,京东对大数据的探索也在进一步深化,通过整合产业链上下游的数据并进行深度的挖掘,使京东的服务更精细化的发展,让用户能够通过数据更好的决策自己的生活。
以上是小编为大家分享的关于京东挖掘大数据金矿 让用户体验更有“数”的相关内容,更多信息可以关注环球青藤分享更多干货
C. 大数据时代九种从大数据中获取价值的方法
大数据时代九种从大数据中获取价值的方法
大数据时代九种从大数据中获取价值的方法,现在已经有了许多利用大数据获取商业价值的案例,我们可以参考这些案例并以之为起点,我们也可以从大数据中挖掘出更多的金矿。 去年TDWI关于管理大数据的调查显示,89%的受访者认为大数据是一个机会,而在2011年的大数据分析的调查中这个比例仅为70%。在这两次调查中受访问者均普遍认为,要抓住大数据的机会并从中获取商业价值,需要使用先进的分析方法。此外,其他从大数据中获取商业价值的方法包括数据探索、捕捉实时流动的大数据并把新的大数据来源与原来的企业数据相整合。 虽然很多人已有了这样一个认识:大数据将为我们呈现一个新的商业机会。但目前仅有少量公司可以真正的从大数据中获取到较多的商业价值。下边介绍了9个大数据用例,我们在进行大数据分析项目时可以参考一下这些用例,从而更好地从大数据中获取到我们想要的价值。1、探索大数据以发现新的商业机会。很多大数据都是来自一些新的来源,这代表客户或合作伙伴互动的新渠道。和任何新的数据来源一样,大数据值得探索。通过数据探索,你可以了解一些之前所不知道的商业模式和事实真相,比如新的客户群细分、客户行为、客户流失的形式,和最低成本的根本原因等等。2、从数据分析中获取商业价值。请注意,这里涉及到一些高级的数据分析方法,例如数据挖掘、统计分析、自然语言处理和极端SQL等等。3、对已收集到的大数据进行分析。许多公司都收集了大量的数据,他们感觉这些数据存在着商业价值,但并不知道怎样从这些弄出来的值大的数据。不同行业的数据集有所不同,比如,如果你处于网络营销行业,你可能会有大量Web站点的日志数据集,这可以把数据按会话进行划分,进行分析以了解网站访客的行为并提升网站的访问体验。4、重点分析对你的行业有价值的大数据。大数据的类型和内容因行业而异,每一类数据对于每个行业的价值是不一样的。比如电信行业的呼叫详细记录(CDR),零售业、制造业或其他以产口为中心的行业的RFID数据,以及制造业(特别是汽车和消费电子)中机器人的传感器数据等等,这些都是各个行业中非常重要的数据。5、使用社交媒体数据来扩展现有的客户分析。客户的各种行为比如评论品牌、评价产品、参与营销活动或表示他们的喜好等等,会在客户中相互影响。社交大数据可以来自社交媒体网站,以及自有的客户能够表达意见及事实的渠道。我们可以使用预测性分析发现规律和预测产品或服务的问题。我们也可以利用这些数据来评估市场知名度、品牌美誉度、用户情绪变动和新的客户群。6、理解非结构化的大数据。非结构化的信息主要指的是是使用文字表达的人类语言,这与大多数关系型数据有着很大的不同,你需要使用一些新的工具来进行自然语言处理、搜索和文本分析。把基于文本内容的业务流程进行可视化展示。7、把客户的意见整合到大数据中。通过运用大数据(与原有的企业资源集成),我们可以对客户或其他商业实体(产品,供应商,合作伙伴)实现360度全景分析,分析的维度属性从几百个扩展到几千个。新增的粒状细节带来更准确的客户群细分,直销策略和客户分析。8、分析大数据流,实时操作业务,提升业务动作水平。实时监测和分析的程序已经在企业运营中存在了很多年,那些需要全天候运行的能源、通讯网络或任何系统网络、服务或设施的机构早就在使用这类型的程序。最近,从监控行业(网络安全、态势感知、欺诈检测)到物流行业(公路或铁路运输、移动资产管理、实时库存),越来越多的组织正在利用大数据流的应用。9、整合大数据以改善原有的分析应用。对于原有的分析应用,大数据可以扩大和扩展其数据样本。尤其在依赖于大样本的分析技术的情况下,比如统计或数据挖掘;而在欺诈检测、风险管理或精确计算的情况下同样也得用上大样本的数据。
D. O2O的大数据金矿应以什么姿势挖掘
O2O的大数据金矿应以什么姿势挖掘
首先我们先来分清数据在商业社会中产生的两端,一端是TO B端,也就是商家端,这个部分在银行表现有企业的存贷等数据;零售业则是商品属性、进价、商家类型等数据。说白了,就是和商家相关的数据;另一端是TO C端,也就是个人端,这个部分在银行表现为个人存贷数据;零售业则是销售、顾客在卖场的动线、会员卡信息等数据。说白了,就是和个人相关的数据。
数据演变的第一阶段:静态数据
在线下的商业时代,也就是我们说的传统企业,数据的第一阶段属于静态数据,怎么理解呢?
就是说你办了张信用卡或者实体店的会员卡,初次登记的信息没办法随时由你个人来改动,这个数 据如果你不打电话去银行或者到实体店,或者他们不联系你时,一直是不会变动的,哪怕你已经换了无数次手机号搬了无数次家,信用卡和会员卡仍然在有效期内可 以使用,这种情况现在已经有很大变化,但仍然是静态数据。而线下的许多动态数据,例如在店里走过来走过去、眼睛看这看那等,原来的技术能力无法获取这些数 据。
数据演变的第二阶段:相对动态数据
在线上的商业时代,也就是我们说的PC电商,数据的第二阶段开始了,那就是相对动态数据,为什么说是相对动态呢?
你在电商网站注册了用户名和密码,你的浏览、点击等这些数据被记录,并可以随时根据你的变化 而变化,这些数据实际上也是相对动态,因为数据和个人及最终销售的关联度有限,而且数据量有限,因为无法对接离开电脑后的数据;然后你产生了购买行为,如 果你的地址和联系方式信息不自行调整,这些电商网站会按照这样的信息进行送货,这种情况现在都会发生。
所以数据需要你手工进行修改,这样的数据就是相对动态数据。这样的数据量一方面是量有限,一 方面是价值有限,最终胜出的并不是烧钱推广的网站,而是构建基础电商服务体系的两个公司,一是构建了在线金融优势的阿里巴巴的支付宝,解决了在线支付;二 是构建了物流优势的京东,解决了快速送货和售后服务。
PC时代产生的许多数据,除了电商外,其它的游戏、门户、商业服务基本都是这样的相关动态形态。傻傻地认为电商要发展起来砸钱买流量的基本都挂了,无一幸免,很有可能是对于数据与商业基础服务关联思考和实践得不足导致,其它原因不再过多赘述!
数据演变的第三阶段:动态数据
到了移动互联网或者再进一步移动社交互联网时代,数据进入到第三阶段,那就是动态数据。
说到这个部分就很好理解了,你的手机可以随时定位你的具体位置,就是你不修改保存的地址平台 都能够知道你的位置精确变化,还有你的浏览轨迹从线上到线下都被跟踪和获取……数据量以几何级开始增长,价值变得越来越高,O2O(线上线下结合)的大数 据时代来临,个人和商家所谓的隐私数据越来越多被各种各样的智能机器获取,人力已经无法HOLD住自己的隐私数据,这个我在2012底年就写过一篇 《O2O的世界没有隐私》的分析文章。
不过话说回来,在这样的大数据时代下,实际上对于轻易能够获取数据的任何一家公司来说,个人 和商家的隐私保护显然担子更重了,因为一旦这些隐私数据被泄露,对于一家公司来说很多时候直接倒闭,无法再次获得信任,这也解释了为什么现在数据安全和攻 击比之前两个时代要多得多的缘故。
非常简单地描述了到现在为止数据演变的三个阶段,当然在“商性研究院”对数据的研究里,还有一个即将来临的阶段应该叫做:超动态数据。
超动态数据
这个阶段的数据到了生物层面,随着智能设备和人类在物质极大丰富后对健康的重视,可能植入设 备不会到来,但是能够通过各种光线探测人类生物数据的智能设备会快速发展并成为日常使用的工具,例如通过增加光线检测的空调能够直接测试人的体温和环境温 度的数据,这些数据再和其它设备产生的热量关联,智能调节温度;戴的手表金属接触皮肤后检测细胞状态获得数据;红外摄影头感应热度数据等等很快会成为可 能,这时候生物数据的快速变化(人的体温变化估计要用毫秒来进行)就使得数据进入到“超动态数据”阶段了。
“那么,大数据金矿应以什么姿势挖掘?”
第一阶段的静态数据结合得让人恼火,简单说大家会有感性认识,你每天收到的垃圾短信、诈骗电 话、推销电话等行为都是这些静态数据被简单粗暴“出卖”的数据金矿挖掘姿势,别说个人非常不爽,其实像电信三巨头和金融业、房地产、4S店、零售企业等这 些拥有在数据第一阶段拥有算是海量的个人和商家静态数据的公司这种金矿挖掘姿势也显得有些无奈,明知大家都不爽,为什么都做?这个话题聊下去估计要上升到 哲学高度,就多扯了,总之金矿挖得很苦,个人骂平台,平台假装没听见或者装无辜……
这个阶段很快被第二阶段的数据挖掘姿势取代,虽然有少量行为,但变得少很多,阿里和京东并不需要将相对动态数据以这种方式变现,而是开始建立数据分析模型和产品,以产品化、工具化和平台化三种方式更有效率且更高收益地挖掘数据金矿。
简单地说:通过相对动态数据就可以知道什么商品更好卖,这个指导着京东这种采销体系的平台进行采购和营销,就比苏宁和国美效率高且数据产生的收益大,再进一步推动的金融创新:京东白条、京东金融让数据收益开始更高效率更低成本地从零售业跨界到金融业。
阿里做得更加极致,除了比京东更早的金融创新之外,还有开发了数据魔方这样数据产品,商家可 以通过付年费方式获取更多数据指导自己的商业行为;还有服务平台的建立,也使得数据进一步在产品和工具开发上获得发展,从而获取收益。这些方面是开放平台 的思路,商家通过平台的个人数据和工具提升效率提高销售降低成本,愿意为数据付费;个人通过数据服务平台了解自己的消费情况,更理性地消费和引导到理财平 台,为后面的动态数据阶段打下了坚实的金矿挖掘基础。
这个时候的银行业、金融业、汽车业、房地产业、零售业面对着自己的数据金矿开始显现出无奈和 无力的一面,只好开始向互联网平台学习,积极寻求两个方面的数据演变:一是数据转化,让静态数据不断转化成相对动态数据;二是通过产品和工具为商家和个人 提供服务,从而愿意为数据付费。但似乎又不愿意放弃之前的数据金矿挖掘方式(有很多企业实际上从来没有挖掘过数据金矿),所以演变得很慢,开始出现暴力开 采导致的带大量金子的沙子流失,这就是“数据迁移”现象。
这个现象很可怕,商家的人力、资金开始不断像线上的平台倾斜,线下的媒体首先受影响,然后是实体店的销售受影响。不过由于在相对动态数据的第二阶段,由于线下数据和线上数据的分离,影响并不那么深远!
第三阶段的动态数据是在硬件技术引发量变的基础上发展起来的,原来PC时代挖掘金矿能力相对 较弱的腾讯借助移动技术优势反而变成最强的一家,一个小小的红包产品在TO C(个人端)引发的数据挖掘方式至今无人可以抗衡,而且已经持续了两年多,每月红包未提现金额的资金沉淀非常惊人;并且在春节的联合商家的红包营销让我们 看到形成了上百年的广告投放和盈利模式被颠覆,广告费直接以红包形式到了个人用户,然后再和商家的公众号进行联接,构建商家和用户关系持续免费营销!
同时借助几乎属于永不退出的微信账号产生的朋友圈位置和动态数据、聊天数据、附近的人调动的 位置数据、第三方应用产生的数据等等开始深度和线下商业结合,一个朋友圈的推广广告产品不仅没有让人反感,反而引发:为什么我没有收到宝马广告这样的二次 营销扩散,每次收到朋友圈推广的人们各种开心各种欢乐评论;商家通过这些数据获得品牌推广和销售增长的机会,平台获得巨额的广告收益。
金融创新的数据挖掘方式在这样的动态数据阶段得到新的爆发,可以说如果不是对传统金融业的有限保护,毫不夸张地说,余额宝这样通过大数据挖掘演变出来的产品会像刚才提到的商家红包一样颠覆金融业在个人领域的盈利模式!
还有一个我所知道的大数据金矿挖掘姿势来自亚马逊的大数据系统给沃尔玛美国和中国的部署基本 实现了全面的智能采购,简单点说就是将全球沃尔玛线下实体店的商家和个人消费数据输入这样的系统,通过算法可以实现不需要人工再分析的采购订单,然后直接 发给供应商订单,然后再配送到店!这方面在努力的公司还有谷歌、网络、FACEBOOK、特斯拉、阿里、华为等等。
如果再深入研究和学习下去,我们就可以发现第三阶段动态数据进化来的大数据金矿能够用很多种 商家和个人都很爽的姿势挖出来,收益是前两个阶段的总和还要高几个几何级。这个部分欢迎大家加我个人微信公众号:izhuangshuai持续关注和交 流,想更深度一起研究,欢迎支付底部的年费后加入“商性研究院”。
这样的大数据金矿挖掘姿势显然比第一阶段和第二阶段都要爽很多、高效很多,收益曾几何级增长 并且帮助到更多商家更有效率更自动化地实现销售增长和利润增长,如果进入到第四个阶段:超动态数据!所有零售系统、生产系统、物流系统和金融系统和人们的 几乎所有数据关联,生产和销售就会变得无须人力,真正进入到“物质极大丰富”的时代,这个时代70后在有生之年应该可以见证了……
这样的发展也再次印证了我的第一本新书《商性》的中心思想:商业越发达越能激发人的真诚和善良!在物质极大丰富之后的人们,在所有隐私数据(包括生物数据)都被获取、存储和关联到人、物的阶段时,我们确实没有理由不变得真诚和善良了!
以上是小编为大家分享的关于O2O的大数据金矿应以什么姿势挖掘的相关内容,更多信息可以关注环球青藤分享更多干货
E. 争夺大数据“金矿”这场战争 运营商orBAT谁是赢家
楼下小白别乱说,如果地球完蛋那是和俄罗斯打,互投核武器。当然现在战争都是常规,应该说不可能使用核武器,除非世界大战。中国和美国打是一场消耗战,当然和美国打,日本韩国那些提供机场后勤的盟友肯定要吃中国导弹。所以中国和美国打的确很吓人,但中国也不是完全赢不了,只是中国军方的保密程度太高了,中国电子战能力可以说决定这场战争的胜负,当然,中国在本土周围单挑美国还是行的。毕竟美国要跑到家门口来,中国依靠地理优势肯定无压力。
F. 谈大数据营销,如何利用大数据发现商机,靠大数据
这里我把大数据的核心价值理解为核心商业价值。
第一次工业革命以煤炭为基础,蒸汽机和印刷术为标志,
第二次工业革命以石油为基础,内燃机和电信技术为标志,
第三次工业革命以核能基础,互联网技术为标志,
第四次工业革命以可再生能源为基础,数据和内容作为互联网的核心为标志。
不论是传统行业还是新型行业,谁率先与互联网融合成功,能够从大数据的金矿中发现暗藏的规律,就能够抢占先机,成为技术改革的标志。
四个月前,《网络安全法》以及最新刑事司法解释正式施行,信息安全尤其是个人隐私保护问题被上升到了一个新高度,当时写了《分水岭:6月1号起,大数据进入下半场!》。
几个月过去了,据媒体报道,有数十家做大数据的公司因涉嫌数据信息安全被约谈或者协助调查,很多数据查询访问接口关停,有人惊呼"大数据行业进入冰封时代"。
但更多的大数据从业人士认为那些倒卖数据的企业是挂羊头卖狗肉,对大数据的名声和产业空间伤害非常大,对整顿拍手称快,认为唯有如此,才能让大数据产业走得更远。
喧闹过后,要冷静思考。不做倒卖数据出售隐私信息,生意应该如何做呢?这不是简单的问题,而是大数据产业的战略选择。
未来的盈利模式
以《网络安全法》为代表,国家严厉打击倒卖客户隐私信息的行为,斩断了数据简单变现的发展模式,目的是推动大数据产业持续健康发展。然而从大数据产业发展的视角看,如果产业链的各个玩家不尽快做出战略选择,那么未来也是死路一条。
做"大而全"的大数据平台是赚大钱的生意经,核心价值是数据完整性和有效性,其价值体现则有直接和间接两种。
由于不能直接售卖个人数据和信息,因此数据变现多以行业报告的方式呈现出来,这将成为平台直接创造商业价值的重要手段。虽然数据来自于个体,但是由于报告呈现的是宏观整体数据,收益也是汇总加工之后产生的,并不受单个数据的影响,完全可以规避法律风险,成为大数据平台名正言顺的收入。
而且,如果大数据平台里有相应的数据,不排除根据企业的要求为其提供指定的"竞品分析报告",比如运营商的大数据平台给腾讯做一份优酷视频的使用情况分析报告,也是合法的生意。
除了发布或提供报告,大数据平台的价值更多地通过间接方式来实现,也就是为数据分析应用提供数据服务。所以致力于建设大数据平台的企业要做好与应用企业的协作,如果应用发展不起来,大数据平台也活不下去——光靠卖报告是养不活大数据平台的。
大数据玩家的另一种存在方式就是做应用,相信未来会有很多以此为生的小而美的企业。这些企业或者在技术(算法、模型)方面有过人之处,或者在业务(营销、运维)方面有一技之长,总之是靠突出的专业性优势而存在,同时由于规模小,成本低,因此可以快速呈现价值,也可以快速调整以适应变化。
无论是做大而全的大数据平台,还是做小而美的应用企业,适逢大数据发展的热潮,都有成功的机会。但这是两类不同的发展模式,笔者很难想象什么样的企业能将这两个角色融为一体,换句话说,就是大数据产业的玩家要清楚自己的战略定位,明确自己的选择,知道什么是应该放弃的,才能涅槃重生。
以上由物联传媒转载,如有侵权联系删除
G. 企业大数据 一座值得开垦的金矿
企业大数据:一座值得开垦的金矿
虽然尚处起步阶段,但是大数据已经成为多个行业的关注热点之一。如何更好地利用大数据推动自身业务的运营发展,这是众多企业不断探索的问题,而运营商也无法忽视这个未来的大金矿。
一、现阶段大数据业务市场状况
从全球情况来看,2015年全球大数据市场规模达到421亿美元,同比增长了47.7%。以此增速进行推算,到2020年全球大数据市场规模可突破3000亿美元。
今年年初,中国信息通信研究院日前发布的《中国大数据发展调查报告(2017)》称,2016年中国大数据市场规模达168亿元,预计2017年~2020年仍将保持30%以上的增长。调查显示,目前近六成企业已成立数据分析相关部门,超过1/3的企业已经应用大数据。
对比起全球情况,中国大数据产业市场规模增长还有很大空间。
二、运营商进入大数据行业思路
运营商先天优势在于掌控大量数据中心资源,这是大数据业务硬件基础。更为重要的是运营商本身拥有大量存量客户资源和客户数据,这也是对运营商进入大数据领域一个有力支撑。
运营商大数据业务运营SWOT分析:
三、运营商大数据业务发展对比
联通
今年9月,中国联通集团正式宣布,旗下的联通大数据有限公司正式揭牌成立。中国联通大数据公司定位于中国联通大数据对外集中运营主体和大数据产业拓展的合资合作平台,全面对接国家和联通集团战略,建立专业化子公司开展市场化运营、建设全产业链大数据生态体系。此外,联通还与中国银联签署了战略合作协议,双方决定建立长期稳定的合作伙伴关系,在数据资源、技术能力、产品研发等方面开展全方位合作。
电信
早在2015年末,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
电信所有的大数据都是在云平台和云设施之上搭建的,2016年下半年其大数据平台建设从原来的5个省份现在扩展到31个省份,数据种类从开始的几类主要数据扩展到十几类,实效性从原来以“周”为单位到现在以“小时”为单位的延时。
移动
在今年“世界电信和信息化社会日大会”上,中国移动通信集团公司副总经理李正茂表示:“发展大数据不是简单的建设IDC,根本目的还是为了应用。大数据正在从炒作的高峰期间,向产业落地期间发展。”
中国移动在六个方面积极推动大数据加速行业转型升级:
第一,社会管理方面,大数据能够分析用户的消费、行为、位置等特征,为政府的社会治理提供保障。
第二,信息传播,大数据成为公众获取信息的新渠道。移动借助位置漫游等信息向公众发布舆情热点的分析。
第三,医疗健康领域,中国移动构建健康云平台在贵州省取得成效,一方面帮助贵州卫集委收集信息,同时为政府医疗机构提供智能审核,疾病救助,疾病预防等多方面的投入,由此为当地医疗支出节省了上千万。
第四,行业创新能力提升,大数据为传统行业打造新的能力。中国移动的大数据提供人流预警,公交道路等服务,为公交管理,游客出行提供参考。
第五,社会热点问题处理支撑,中国移动基于大数据构建了反电信网络,欺诈防范技术体系,在2-10分钟可以识别市场号码源,来源区域,受害人集中地等等,同时实现最高风险等级,影响最大的境外异常号码源时时阻断。
第六,商业模式创新,2016年,中国移动和招商局集团共同投资设立试金石信用服务有限公司。
虽然三大运营商大数据布局在实际操作上不同,但是都明确把大数据从布局转移到实行阶段,软硬件资源日益充实,并且已经打造出不少成功案例。
四、布局大数据市场
1、攻坚热点领域
智慧城市
早在2014年,国家发改委会同中央网信办等25部委组成部际协调工作组,启动新型智慧城市试点建设。2016年又明确提出了到2018年要分级分类建设100个新型示范性智慧城市。
智慧城市建设带来的商机是巨大的,而大数据恰好在智慧城市建设中扮演重要角色。可以通过方方面面渗入,如城市交通、环境监测、治安管理、卫生管理等城市生活每个细节。
当然,运营商也已经对此领域有所行动。比如联通大数据公司就有“智慧足迹”这一项业务,提供“以人为本”的群体位置数据应用,为政府和企业提供包括人流量、人流密度、职住空间分布、人口时空分布在内的位置大数据解决方案。
政务
通过IDC、ICT基础通信业务为政府部门提供服务,并且为其构建大数据管理分析平台。政府运作效率和质量提升已经不仅仅拘泥于办理业务、处理业务时间上的减少,还要做到未雨绸缪,及时发现潜在民生问题,做好预防工作:比如通过婚姻注册数据挖掘离婚率提升因素,从而地提出针对性措施;又比如通过分析注册中小企业税务数据,了解税收政策对中小企业是否存在推进作用,有消极作用的加以改善。
医疗健康
根据前瞻产业研究院发布的《2017-2022年全球健康医疗大数据行业发展前景预测与投资战略规划分析报告》显示,2010年我国健康医疗大数据行业市场规模约为171亿元,到2015年快速增长到466亿元,年均复合增长率超过20%。
可穿戴设备的出现使到个人身体健康实时监测得到硬件上的支持,而把这个契机转化为商机就需要完善的大数据平台作为支撑。
而通信运营商涉足该领域也有很合适的切入口,比如利用存量家庭业务客户进行拓展,享受低资费优惠。
2、提升自身运营
运营商本身拥有着庞大数据资源,也应该很好地利用这些资源为自身运营提供动力。
一方面通过用户数据库做好用户维系和质量提升,对高危潜在离网用户及早挽留,而对潜在需求用户可以推广增值业务提升客户价值。
另一方面,涉及到数据交互(即通过与其他行业合作,双方数据通过融合整理)发掘出的更多有价值结论,能支撑双方运营,互惠互利。
五、大数据业务营销
通过IDC建设、产品建设打好基础,进行业务营销就是下一步关键所在。进行大数据业务营销通过标杆打造+体验营销是较好选择。
由于业务属于起步阶段,要吸引到市场目光和认同,必须树立业务标杆。在硬件和软件有实力的前提下,运营商要打造专业化团队,树立行业顶尖形象,以优质案例打动潜在客户。
营销人员在向潜在客户推销产品时,需要结合案例详解、实体考察、便携式设备体验进行销售活动,以具体化、专业化的方式打动客户。
需要明确的是,大数据硬件软件方面做好后,剩下最关键一环就是在营销上打动客户。
如何打动客户?用事实说话
例如2013年,微软纽约研究院的经济学家大卫?罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。2014年罗斯柴尔德再次成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个。在这种震撼的事实面前,展现大数据的实用性和威力。
六、展望
由于各行各业各领域都能够有机会用到大数据分析为管理运营作支撑,所以大数据业务发展潜力毋容置疑。现在对运营商而言,做好硬件软件基础的同时,更要深挖市场需求,打造营收模式标杆,以点带面地实现业务快速增长。
H. 坐拥大数据“金矿”却难挖掘
坐拥大数据“金矿”却难挖掘
大数据将成运营商“去管道化”利器,近期围绕这一话题,国内运营商人士讨论热烈。由受OTT的冲击,到“去电信化”等思索,再到大数据这一运营商手中天然的金矿成为理论中的突破口,这一逻辑顺理成章。
大数据并非运营商独家的概念,它已成为整个互联网行业共同关注的领域。那么运营商手中的金矿,含金量究竟几分,金矿如何挖?敢不敢挖?能否比其他人挖得更好?这是全球运营商共有的话题。
日本
隐私问题让NTT Docomo头疼
陶旭骏告诉记者,日本最大的移动通信运营商NTT Docomo 2010年以前就开始着手大数据运用的规划。Docomo不但着重搜集用户本身的年龄、性别、住址等信息,而且制作精细化的表格,要求用户办理业务填写更详细信息。
“我曾见过这样的表格,包括用户家里有几口人,每个人的教育水平,通信需求等都会有所涉及。而且他们的优势是可以掌握全国用户的数据,而不像我们的运营商划省而治,各地数据收集、整合方式不一。Docomo的CRM系统和知识库为此大大加强,业务办理中很少出现愚蠢的状况,比如一个用户此前刚投诉过还向其推销同类产品等。”
尽管信息完整度高,但因为日本社会十分注重个人隐私,Docomo多年来在大数据运营上仍停留在规划阶段,对如何越过隐私问题进行商用还是比较头疼。陶旭骏表示,Docomo曾为未来的大数据商业化制定了三个阶段:首先是建立资料库,其次是建立活用机制,最后是实现活用,而当前只处于第一阶段。
欧洲
运营商谨慎开放地理位置信息服务
方红刚表示,在德国,身为主流运营商的德国电信和Vodafone在利用大数据为自身业务服务之余,已向商业模式跨出了一步。主要尝试是通过开放API,向数据挖掘公司等合作方提供部分用户匿名地理位置数据,以掌握人群出行规律,有效地与一些LBS应用服务对接。而西班牙电信的商业模式与之比较相像,去年推出的“智慧足迹”大数据服务同样是通过人流移动网络数据,为零售客户开店选址和促销提供借鉴。
“欧洲运营商对大数据API开放同样持比较谨慎的态度,有时带有战略意图。比如数据开放同时伴随着收费,对于和自己合作紧密的初创型企业,就以更宽松政策予以扶持,而对于有竞争关系的OTT企业等,则要求更高。总而言之,运营商不太可能将未经加密的用户数据直接提供给第三方。”方红刚称。
美国
Verizon激进,向特定商家“兜售”数据
步子最为激进的则数美国运营商Verizon,其一项举措则让谭炎明等业内人士感到错愕:Verizon已开始通过一项名为Precision MarketInsights的服务,将手中的用户数据直接向第三方出售。谭炎明对此业务进行过详细了解,Verizon的该项服务主要针对商场、球场等特定的公开场所,搜集手机用户的背景信息,为第三方所用。
在美国,棒球和篮球比赛是观众云集,商家最为看中的营销场合,此前在超级碗和NBA的比赛中,Verizon针对观众的来源地进行了精确数据分析,球队得以了解观众对赞助商的喜好等。体育比赛中,观众随机买票,没有什么环节可以将身份信息进行录入,通过任何其他方式搜集数据成本都会更高,运营商的大数据在这项服务中无可替代。
“金矿”体量最大 挖掘出来有难度
与《IT时报》记者交流中,专家们一致认为运营商对大数据资源掌握的完整性远超任何一家互联网公司。“用户的属性、整个通信消费数据、GPS行走轨迹、登录网站的偏好、频率等运营商手中都有数据,这么完整、详尽的精准用户行为数据单一网站无法掌握。”方红刚总结,正因为运营商的“管道”特性,管道中的任何一个细节都逃不过运营商的眼睛。从这个层面来说,运营商手中大数据的金矿体量是最大的,如从事大数据业务是具有天然优势的。
正因为运营商手中的数据量太大,其整合为有价值信息的成本也较高。如何将“金矿”开采成不同属性的轻产品,是全球运营商面临的课题。
“之所以当前大数据应用多停留在零售层面,而非更复杂的功能,一方面是因为运营商手中数据到底该怎么用,还是取决于合作方最切实可行的需求。其次,复杂需求从技术上或尚难做到,或成本太高。”谈到技术局限,方红刚表示自己就曾亲自对一些大数据项目展开调研,发现提取有效数据的时间精力很高。
“互联网上的数据收集相对简单,例如用户在网络搜索某个关键词,网络后台一目了然。但通信网中的数据有物理层、逻辑层、应用层等层级化的特征,每层都是映射方式,所以问题就产生了,数据都存在于逻辑层以下,需要把它们从逻辑层解构到应用层,数据分析成为了协议分析。”方红刚表示,他曾在电脑上仅仅针对某一小块特定区域一小时内的通信数据进行采集,结果就跑了两个多小时。
“如今是一个信息泛滥的时代,在成本非常高,而且数据来源往往分散在各个部门的情况下,运营商内部需要做大量的工作才能进行有效的精华数据深度挖掘,所以如果没有来自合作方的非常明确需求,且该需求能带来相匹配的商业价值,业务发展就可能陷于停滞。”方红刚解释。为避免内部结构问题阻碍大数据业务的发展,西班牙电信与Verizon都已于去年专门成立了大数据部门,脱离于传统体制而单独发展业务,这也是这两家的大数据业务发展相对更快的原因之一。
顾洪文直言,基于上述因素,尽管国外运营商有一些突破性的应用案例,但纯属个别,且初始阶段的痕迹明显:“严格来说,全球运营商在大数据商业化挖掘方面都停留在一个浅层次的阶段。该概念当前过热,实际运营良好与否取决于数据持有方的运营能力。”
I. 离贵阳火车站最近的金矿
贵阳现在最大的金矿就是大数据中心,所以离火车站最近的就是贵州省大数据产业发展中心。
大数据产业最核心的是大数据中心,因为它可以收集、存储、挖掘数据,而贵阳拥有这样的中心,就拥有了新的金矿。贵阳接下来要建立大数据思维,寻找大数据运用,并时刻保持饥饿感。
J. 大数据被称为21世纪的石油和金矿它具有哪四大特征
价值,多样,大量,高速。
石油是指气态、液态和固态的烃类混合物,具有天然的产状。石油又分为原油、天然气、天然气液及天然焦油等形式,但习惯上仍将“石油”作为“原油”的定义用。
金矿指金矿石或金矿床(山)。金矿石是具有足够含量黄金并可工业利用的矿物集合体。金矿山是通过采矿作业获得黄金的场所,是通过成矿作用形成的具有一定规模的可工业利用的金矿石堆积。