导航:首页 > 数据处理 > 如何成为一名专业的数据分析人员

如何成为一名专业的数据分析人员

发布时间:2024-06-10 05:00:18

㈠ 一个合格的数据分析师需要什么技能

【导读】数据分析说是新行业却也不新了,不过对于此类行业,还是有很多小伙伴对此不知如何下手,那么对与刚入行的小白,如何走到成熟,成为一个合格的数据分析师呢?为此小编通过整理资深的数据分析师必备的几项技能作以分析,下面我们一起来看看一个合格的数据分析师需要什么技能?

1、统计

统计作为数据分析的基石,自然是每个数据分析师不可或缺的一项技能。统计方法包括定量方法、决策分析、数据库原理、预测分析、数据管理、优化、大数据分析以及数据挖掘等。

2、数据可视化工具

(1)Excel

Excel是一款常用的数据显示工具。Excel中的数据分析功能非常强大,它包括描述统计、相关系数、概率分布、均值估计、线性、非线性回归、多元回归分析以及时间序列等功能。普通的数据分析人员掌握Excel这一类简单的可视化工具足矣。

(2)专业的可视化软件

D3.js、HighCharts、Tableau和PowerBI等都是专业的可视化工具。如果,你想要成为专业的数据分析师,你必须掌握其中的一种或者几种。

(3)Python

学习过Python的人都知道,Python中有很多用于可视化的第三方库,例如matplotlib、seaborn、plotly、Boken、pyecharts等。这些可视化库具有其优势,并已在实际应用中广泛使用。

3、大数据处理框架

如果你想成为大数据分析师,那么你一定要学会大数据框架的基础知识。大数据处理框架可以用于计算大数据系统的数据。

4,数据库

一些数据分析人员会专门清理数据。但如果你想出类拔萃,你就需要掌握每种算法的精髓——数据库基础。SQL是数据库中的核心技术。MySQL、SQL
Server和Oracle是使用最广泛的数据库。

5,数据仓库

数据仓库在数据分析中起到至关重要的作用。它是一个面向主题的、集成的、相对稳定的数据集,可反映历史变化。数据仓库具有集成,稳定,高质量的优势。基于数据仓库进行数据分析可以保证数据质量和数据完整性。

6,人工智能

从严格意义上讲,人工智能和数据分析师完全两种概念,不属于同一领域。因此,大数据分析科学家需要此技能。如果你是新手,这一块就可以先放一放。

人工智能所涵盖的知识过于广泛和深入,因此最好采用基于问题的学习方法。首先,选择问题。然后,找到解决问题的资源,并进一步了解解决问题过程中遇到的名词和知识。

7,机器学习

机器学习是人工智能的一个分支,它可以自动分析数据并从中获取规则,并使用规则来预测未知数据。它已被广泛应用于数据挖掘、计算机视觉、自然语言处理、搜索引擎、医学诊断、证券市场分析等领域。

8,数据挖掘技巧

操作数据挖掘软件是数据分析师的必备技能之一。它是大多数商业智能计划的核心应用程序,数据挖掘软件可以帮助您从大量数据中发现见解。主要包括分类算法,聚类算法,相关性分析,连接分析等,是必须掌握的数据挖掘基本算法的研究。

9.编程语言

精通编程语言可以使数据分析工作更加灵活。编程语言适用于所有类型的数据。大多数新奇的仪表板都可以通过代码或绘图软件来实现。

(1)R语言

R是一种开源并且免费的编程语言,其图形功能非常强大。如果你想要对海量的数据进行统计分析,R一定是最好的选择。

(2)Python语言

如果你想要在GPU上进行NLP或密集的神经网络处理,选择Python会更好。

(3)Java或Scala

如果你想要的得到一个面向生产的数据流解决方案,最好选择Java或者Scala。

10.撰写报告

编写数据分析报告是对数据分析的总结和介绍。报告内容必须完成呈现数据分析的原因、过程、结果和建议,供决策者参考。另外,我们在写报告时,切记不要只写数据结果,还应该写上明确的结论。

当然,除了以上数据分析师必备技能外,数据敏感度、逻辑思维能力、归纳能力、批判性思维能力以及沟通能力等软技能也是一个优秀数据分析师的必备技能。

关于“一个合格的数据分析师需要什么技能?”的内容就给大家介绍到这里了,更多关于大数据分析的相关内容,关注小编,持续更新。

㈡ 数据分析师条件

Ⅰ 学数据分析,报考数据分析师考试有哪些条件

在考试前也应注意的:要模拟练习,想象老师可能出的题目,从考古题中,或从自我评量的题目中,从关键的词汇里尝试来自我解答,相信在不断的练习,你可以知道哪些部分需要再加强。

Ⅱ 项目数据分析师报考条件是什么

人才认证 主管机构 项目数据分析师专业技术培训项目的主办单位是中回国商业联合会数据分析专答业委员会及工业和信息化部教育与考试中心。 分管机构 各盛直辖市构建专业认证体系的形式存在,并开展培训、继续教育等工作。

Ⅲ 如何考大数据分析师

大数据分析师报考要求如下:

1、初级数据分析师:

(1)具有大专以上学历,或从事统计工作的人员;

(2)通过初级笔试、上机考试、报告考核,成绩全部合格。

2、中级数据分析师:

(1)具有本科及以上学历,或初级数据分析师证书,或从事相关工作一年以上;

(2)通过中级笔试、上机考试,成绩全部合格;

(3)通过中级实践应用能力考核。

3、高级数据分析师:

(1)研究生以上学历,或从事相关工作五年以上;

(2)获得中级数据分析师证书。

(3)通过高级笔试、报告考核后,获取准高级数据分析师证书;

(4)考生在获得准高级证书后,在专业领域工作五年,并撰写一篇专业数据分析论文,经答辩合格,获取高级数据分析师合格证书。

(3)数据分析师条件扩展阅读

技能要求

1、懂业务

从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理

一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

Ⅳ 2016数据分析师报考条件

2016数据分析师分报考条件(具备以下条件之一):

1.大专以上学历,在相关行业连续半年以上实践、实习经历(提供学历证书原件、复印件和单位证明原件)。

2.中专学历者,相关专业(电子商务、计算机及其应用、通信工程、电子信息工程等)毕业,从事相关行业连续1年以上实践、实习经历。 非上述专业,须在相关行业连续实践3年以上(提供学历证书原件、复印件和单位证明)。

3.在校学生(含自学考试)大专层次以上相关专业(同上)学生报考必须已学习相关专业2年以上;其它学生报考须按教学大纲经系统培训80学时以上(培训学校结业证书或证明)。

4.持有相关职业技术证书的人员(提供证书原件、复印件)均可申报。

数据分析师考试相关知识:

考试安排:

数据分析师由工业和信息化部教育与考试中心和中国商业联合会数据分析专业委员会统一安排考核,截止2014年8月,考试共有三门《数据分析基础》《量化经营》《量化投资》,每门100分,60分及格制。

考试时间:

每年有4次考试。具体时间请关注CPDA数据分析师官网考试通知,大致在每年的3月、6月、9月、12月中旬。

颁发证书:

考核合格,学员获得:由工业和信息化部教育与考试中心颁发的《项目数据分析师职业技术证书》和中国商业联合会数据分析专业委员会颁发的《数据分析师证书》,证书可查询。见下图

希望能帮到您

Ⅳ 成为一名优秀的数据分析师需要什么条件

1、对上级:了解数据需求。最核心的是搞清楚领导对数据工作的满意/不满意点。用小本子记下来,交办了多少项事情,紧急程度如何。这样每周汇报完成了多少。慢慢做不等于闷不吭声做,越是见效慢的工种就越得分阶段的、日常的汇报进度。不然,领导看不到进展,就会以为新招一个人来了也没啥起色,就会心生怨念。大部分悲剧都是从这里开始的。
2、对业务部门平级:了解业务背景。业务流程自然要慢慢熟悉,之前发生过哪些重大业务动作要逐步了解。这些和构建分析思路,解答问题有重大关系。暗中观察不同部门对数据的态度,后续合作的时候,可以有针对性的。
3、对技术部门平级:了解数据流程。数据采集-清洗-存储-BI开发-维护,每个环节上都是谁在干,情况如何。要一一整明白。以后大家常在一起干活,关系自然要维护好。
4、对下级(如果有):先别急着摆官威,先整明白现有的数据需求(报表/专题/BI)种类,用途,日常工作中下级有什么困惑。已经吃过饼的人,才最知道饼的滋味。别被老板画的大饼忽悠了,多听听基层真实情况,可以让自己更好理解形势。
以上~~听起来很怂,可却是比较稳妥的立足方式。也有些小伙很 *** ,进门就怀着“我为大家带阿尔法狗来啦!”的想法,指望着一进公司就做出超牛逼算法毁天灭地,哦不,改天换地。这种特激进的做法,往往容易惹麻烦。先处理好人际关系,摸清形势再有的放矢。

Ⅵ 如何成为一个数据分析师需要具备哪些技能

接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。

数据获取:公开数据、Python爬虫

如果接触的只是企业数据库里的数据,不需要要获取外部数据的,这个部分可以忽略。

外部数据的获取方式主要有以下两种。

第一种是获取外部的公开数据集,一些科研机构、企业、 *** 会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。

另一种获取外部数据费的方式就是爬虫。

比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。

在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数(链接的菜鸟教程非常好)……以及如何用成熟的 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。如果是初学,建议从 urllib 和 BeautifulSoup 开始。(PS:后续的数据分析也需要 Python 的知识,以后遇到的问题也可以在这个教程查看)

网上的爬虫教程不要太多,爬虫上手推荐豆瓣的网页爬取,一方面是网页结构比较简单,二是豆瓣对爬虫相对比较友好。

掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、模拟用户登录、使用代理、设置爬取频率、使用cookie信息等等,来应对不同网站的反爬虫限制。

除此之外,常用的的电商网站、问答网站、点评网站、二手交易网站、婚恋网站、招聘网站的数据,都是很好的练手方式。这些网站可以获得很有分析意义的数据,最关键的是,有很多成熟的代码,可以参考。

数据存取:SQL语言

你可能有一个疑惑,为什么没有讲到Excel。在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也需要懂得SQL的操作,能够查询、提取数据。

SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:

提取特定情况下的数据:企业数据库里的数据一定是大而繁复的,你需要提取你需要的那一部分。比如你可以根据你的需要提取2018年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。

数据库的增、删、查、改:这些是数据库最基本的操作,但只要用简单的命令就能够实现,所以你只需要记住命令就好。

数据的分组聚合、如何建立多个表之间的联系:这个部分是SQL的进阶操作,多个表之间的关联,在你处理多维度、多个数据集的时候非常有用,这也让你可以去处理更复杂的数据。

数据预处理:Python(pandas)

很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。

比如空气质量的数据,其中有很多天的数据由于设备的原因是没有监测到的,有一些数据是记录重复的,还有一些数据是设备故障时监测无效的。比如用户行为数据,有很多无效的操作对分析没有意义,就需要进行删除。

那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。

对于数据预处理,学会 pandas 的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:

选择:数据访问(标签、特定值、布尔索引等)

缺失值处理:对缺失数据行进行删除或填充

重复值处理:重复值的判断与删除

空格和异常值处理:清楚不必要的空格和极端、异常数据

相关操作:描述性统计、Apply、直方图等

合并:符合各种逻辑关系的合并操作

分组:数据划分、分别执行函数、数据重组

Reshaping:快速生成数据透视表

概率论及统计学知识

数据整体分布是怎样的?什么是总体和样本?中位数、众数、均值、方差等基本的统计量如何应用?如果有时间维度的话随着时间的变化是怎样的?如何在不同的场景中做假设检验?数据分析方法大多源于统计学的概念,所以统计学的知识也是必不可少的。需要掌握的知识点如下:

基本统计量:均值、中位数、众数、百分位数、极值等

其他描述性统计量:偏度、方差、标准差、显着性等

其他统计知识:总体和样本、参数和统计量、ErrorBar

概率分布与假设检验:各种分布、假设检验流程

其他概率论知识:条件概率、贝叶斯等

有了统计学的基本知识,你就可以用这些统计量做基本的分析了。通过可视化的方式来描述数据的指标,其实可以得出很多结论了,比如排名前100的是哪些,平均水平是怎样的,近几年的变化趋势如何……

你可以使用python的包 Seaborn(python包)在做这些可视化的分析,你会轻松地画出各种可视化图形,并得出具有指导意义的结果。了解假设检验之后,可以对样本指标与假设的总体指标之间是否存在差别作出判断,已验证结果是否在可接受的范围。

python数据分析

如果你有一些了解的话,就知道目前市面上其实有很多 Python 数据分析的书籍,但每一本都很厚,学习阻力非常大。但其实真正最有用的那部分信息,只是这些书里很少的一部分。比如用 Python 实现不同案例的假设检验,其实你就可以对数据进行很好的验证。

比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。比如DataCastle的训练竞赛“房价预测”和“职位预测”,都可以通过回归分析实现。这部分需要掌握的知识点如下:

回归分析:线性回归、逻辑回归

基本的分类算法:决策树、随机森林……

基本的聚类算法:k-means……

特征工程基础:如何用特征选择优化模型

调参方法:如何调节参数优化模型

Python 数据分析包:scipy、numpy、scikit-learn等

在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。

当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类,然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去学习如何通过特征提取、参数调节来提升预测的精度。这就有点数据挖掘和机器学习的味道了,其实一个好的数据分析师,应该算是一个初级的数据挖掘工程师了。

系统实战

这个时候,你就已经具备了数据分析的基本能力了。但是还要根据不同的案例、不同的业务场景进行实战。能够独立完成分析任务,那么你就已经打败市面上大部分的数据分析师了。

如何进行实战呢?

上面提到的公开数据集,可以找一些自己感兴趣的方向的数据,尝试从不同的角度来分析,看看能够得到哪些有价值的结论。

另一个角度是,你可以从生活、工作中去发现一些可用于分析的问题,比如上面说到的电商、招聘、社交等平台等方向都有着很多可以挖掘的问题。

开始的时候,你可能考虑的问题不是很周全,但随着你经验的积累,慢慢就会找到分析的方向,有哪些一般分析的维度,比如top榜单、平均水平、区域分布、年龄分布、相关性分析、未来趋势预测等等。随着经验的增加,你会有一些自己对于数据的感觉,这就是我们通常说的数据思维了。

你也可以看看行业的分析报告,看看优秀的分析师看待问题的角度和分析问题的维度,其实这并不是一件困难的事情。

在掌握了初级的分析方法之后,也可以尝试做一些数据分析的竞赛,比如 DataCastle 为数据分析师专门定制的三个竞赛,提交答案即可获取评分和排名:

员工离职预测训练赛

美国King County房价预测训练赛

北京PM2.5浓度分析训练赛

种一棵树最好的时间是十年前,其次是现在。现在就去,找一个数据集开始吧!!

Ⅶ 数据分析师的入职条件是什么

任职要求:
1.大专抄及以上学历有半年袭以上统计工作经验;

2.熟练运用office办公软件,熟练掌握、运用excel表格函数,有较强的数据统计、分析能力;

3.工作认真积极进取有较强的工作责任感和事业心有强烈的集体认同感和团队合作精神。

Ⅷ 数据分析师做什么工作,报考条件是什么

数据分析来师是为了适应大数据源时代要求,加强正规化、专业化、职业化的数据分析师人才队伍建设,进一步提升我国数据分析员师的职业素质和能力水平,经国家相关部委统一颁布实施,旨在通过掌握大量行业数据以及科学的计算工具,将经济学原理用数学模型表示,科学合理的分析投资和运营项目未来的收益及风险情况,为做出科学合理的决策提供依据。
报考条件没有限制。

Ⅸ 数据分析师主要做什么

专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测。

互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。以往“原子世界”中数据分析师要花较高的成本(资金、资源和时间)获取支撑研究、分析的数据,数据的丰富性、全面性、连续性和及时性都比互联网时代差很多。

与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。

就行业而言,数据分析师的价值与此类似。就新闻出版行业而言,无论在任何时代,媒体运营者能否准确、详细和及时地了解受众状况和变化趋势,都是媒体成败的关键。

(9)数据分析师条件扩展阅读

数据科学家这个职业的定义有点广泛。同样叫数据科学家,在不同行业不同公司干的活可能是很不一样的。

有的偏机器学习、建模,有的偏数据分析。有的叫数据科学家,干的很多事情跟软件工程师(SWE)很类似。有的偏产品,风格短平快。有的偏长期研究,看的是一两年甚至更久的效果。

做数据分析的最终目的,那就是通过数据分析来引导产品改进的能力。任何方面的技能,归根结底都需要为这个目的服务。

Ⅹ 项目数据分析师报考条件是什么

至少大专学历,大专学历需有数据分析相关工作2年经验
本科及以上学历,可直接报名
项目数据分析师,是考培一体化的,需要参加培训,方可考试
现在,项目数据分析师已经改名为 数据分析师

㈢ 如何快速成为数据分析师 看这里

【导读】随着大数据时代的降临,越来越多的公司开始注重数据,希望能从数据中找到具有价值的信息,帮助公司做出正确的决策,使其发展的更加顺利,数据分析师也成为越来越多人向往的职业。那么,如何快速成为一名数据分析师呢?掌握下面这4点。

业务能力

数据分析工作的重中之重就是业务能力,只要真正的在实践领域从事过,就会真正的明白业务知识是你分析的根本。而业务知识的学习是需要时间积累的。业务知识的培养是将远远超过技术工具的学习。数据分析其实就是基于业务之上的更深层次的思考和总结。对业务学习,我们可以根据以前的报告和案例拿来研究,这是一个需要时间沉淀的过程,也是最需要不断提升的能力,没有之一。

思考能力

当我们拿到一份数据报表的时候,整个数据就摆在面前,它不会主动开口告诉你。这就需要我们去推演和分析,从中找到规律,迅速评估问题的关键属性和决定因素,形成自己的独有见解,总结报告。所谓心思缜密,滴水不漏,没有思考逻辑,就没有分析思维。我们培养思考能力,可以通过跨领域的知识来带给我们不同的思维方式和问题的角度;另外也要养成爱思考的习惯。“学而不思则罔,思而不学则殆”,思考本身就是一种实践,将你所学的知识更系统和深入。

沟通能力

数据分析贯穿企业整个工作流程链,你需要面对不同的岗位,不同的角色,这个时候,就需要你良好的沟通能力,采用不同的语言和表达方式,来获取你想要的东西。沟通能力就是数据和业务的桥梁。再沟通中,我们不要固执己见,要采取他人的意见,尤其是智者的意见,可以帮我们降低犯错率,提高分析正确率,这样我们的分析才会更有说服力。

技术能力

我们自己了解到的,相关技术像Excel,MySql,Python,SPSS等这些工具。我们如果刚刚步入数据分析工作,其实Excel就已经足够了。如果我们想更深层次的掌握,可以学习Python,R,SPSS等这些。他们提供的强大的挖掘功能和图形能力。尤其是R,Python引用他们的库非常方便,而已技术也很成熟。

以上就是小编今天给大家整理分享关于“如何快速成为数据分析师?
看这里”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

㈣ 作为一个优秀的数据分析师,需要具备哪些条件

作为一个优秀的数据分析师需要具备的条件有:

1、对自己的业务知识有一定的了解。

2、有比较好的数据处理能力、

3、能够熟练的掌握数据分析和建模的方法。

4、需要具有良好的沟通,能够和业务人员,和技术人员无障碍沟通。

5、必须精通一种数据分析相关的应用工具。

所谓的数据分析师是指数据师Datician['detn]的一种,就是指的是不同行业中,一些专门从事某个行业的数据搜集、整理、分析,并且依据数据做出的行业研究、评估和预测的专业工作人员。

如果想要成为一位优秀的数据分析师,推荐先去CDA数据认证中心了解。CDA(Certified Data Analyst),即“CDA 数据分析师”;旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。

阅读全文

与如何成为一名专业的数据分析人员相关的资料

热点内容
简易程序在哪个法院开庭 浏览:964
小学电子学籍包括哪些信息 浏览:137
学生评选优秀信息员多少钱 浏览:755
更改小客车信息去哪里 浏览:701
公共资源交易数字认证证书怎么办 浏览:838
中信61交易限额怎么处理 浏览:455
电子信息类可报考国考哪些岗位 浏览:893
荆州饮料招商代理多少钱 浏览:875
银行的数据保存多少年 浏览:346
乡村振兴需要哪些专业技术人才 浏览:737
二手房交易后多久可以抵押贷款 浏览:304
交易所是什么中文 浏览:684
盐城工控产品有哪些 浏览:743
会计科目信息包括哪些 浏览:218
京东怎么退物流信息 浏览:975
场外交易有哪些法律条件 浏览:753
塑料怎么做产品 浏览:950
生产企业如何开具农产品收购发票 浏览:913
老人机如何一键删除所有信息 浏览:762
哪些产品必须有s标 浏览:464