⑴ 数据挖掘有哪些方法
1、神经元网络办法
神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。
2、遗传算法
遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。
3、决策树算法办法
决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。
4、遮盖正例抵触典例办法
它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。
5、数据剖析办法
在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。
6、含糊集办法
即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。
⑵ 数据分析中的缺失值处理
数据分析中的缺失值处理
没有高质量的数据,就没有高质量的数据挖掘结果,数据值缺失是数据分析中经常遇到的问题之一。当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理。但在实际数据中,往往缺失数据占有相当的比重。这时如果手工处理非常低效,如果舍弃缺失记录,则会丢失大量信息,使不完全观测数据与完全观测数据间产生系统差异,对这样的数据进行分析,你很可能会得出错误的结论。
造成数据缺失的原因
现实世界中的数据异常杂乱,属性值缺失的情况经常发全甚至是不可避免的。造成数据缺失的原因是多方面的:
信息暂时无法获取。例如在医疗数据库中,并非所有病人的所有临床检验结果都能在给定的时间内得到,就致使一部分属性值空缺出来。
信息被遗漏。可能是因为输入时认为不重要、忘记填写了或对数据理解错误而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障、一些人为因素等原因而丢失。
有些对象的某个或某些属性是不可用的。如一个未婚者的配偶姓名、一个儿童的固定收入状况等。
有些信息(被认为)是不重要的。如一个属性的取值与给定语境是无关。
获取这些信息的代价太大。
系统实时性能要求较高。即要求得到这些信息前迅速做出判断或决策。
对缺失值的处理要具体问题具体分析,为什么要具体问题具体分析呢?因为属性缺失有时并不意味着数据缺失,缺失本身是包含信息的,所以需要根据不同应用场景下缺失值可能包含的信息进行合理填充。下面通过一些例子来说明如何具体问题具体分析,仁者见仁智者见智,仅供参考:
“年收入”:商品推荐场景下填充平均值,借贷额度场景下填充最小值;
“行为时间点”:填充众数;
“价格”:商品推荐场景下填充最小值,商品匹配场景下填充平均值;
“人体寿命”:保险费用估计场景下填充最大值,人口估计场景下填充平均值;
“驾龄”:没有填写这一项的用户可能是没有车,为它填充为0较为合理;
”本科毕业时间”:没有填写这一项的用户可能是没有上大学,为它填充正无穷比较合理;
“婚姻状态”:没有填写这一项的用户可能对自己的隐私比较敏感,应单独设为一个分类,如已婚1、未婚0、未填-1。
缺失的类型
在对缺失数据进行处理前,了解数据缺失的机制和形式是十分必要的。将数据集中不含缺失值的变量称为完全变量,数据集中含有缺失值的变量称为不完全变量。从缺失的分布来将缺失可以分为完全随机缺失,随机缺失和完全非随机缺失。
完全随机缺失(missing completely at random,MCAR):指的是数据的缺失是完全随机的,不依赖于任何不完全变量或完全变量,不影响样本的无偏性。如家庭地址缺失。
随机缺失(missing at random,MAR):指的是数据的缺失不是完全随机的,即该类数据的缺失依赖于其他完全变量。例如财务数据缺失情况与企业的大小有关。
非随机缺失(missing not at random,MNAR):指的是数据的缺失与不完全变量自身的取值有关。如高收入人群的不原意提供家庭收入。
对于随机缺失和非随机缺失,删除记录是不合适的,随机缺失可以通过已知变量对缺失值进行估计;而非随机缺失还没有很好的解决办法。
说明:对于分类问题,可以分析缺失的样本中,类别之间的比例和整体数据集中,类别的比例
缺失值处理的必要性
数据缺失在许多研究领域都是一个复杂的问题。对数据挖掘来说,缺省值的存在,造成了以下影响:
系统丢失了大量的有用信息;
系统中所表现出的不确定性更加显着,系统中蕴涵的确定性成分更难把握;
包含空值的数据会使挖掘过程陷入混乱,导致不可靠的输出。
数据挖掘算法本身更致力于避免数据过分拟合所建的模型,这一特性使得它难以通过自身的算法去很好地处理不完整数据。因此,缺省值需要通过专门的方法进行推导、填充等,以减少数据挖掘算法与实际应用之间的差距。
缺失值处理方法的分析与比较
处理不完整数据集的方法主要有三大类:删除元组、数据补齐、不处理。
删除元组
也就是将存在遗漏信息属性值的对象(元组,记录)删除,从而得到一个完备的信息表。这种方法简单易行,在对象有多个属性缺失值、被删除的含缺失值的对象与初始数据集的数据量相比非常小的情况下非常有效,类标号缺失时通常使用该方法。
然而,这种方法却有很大的局限性。它以减少历史数据来换取信息的完备,会丢弃大量隐藏在这些对象中的信息。在初始数据集包含的对象很少的情况下,删除少量对象足以严重影响信息的客观性和结果的正确性;因此,当缺失数据所占比例较大,特别当遗漏数据非随机分布时,这种方法可能导致数据发生偏离,从而引出错误的结论。
说明:删除元组,或者直接删除该列特征,有时候会导致性能下降。
数据补齐
这类方法是用一定的值去填充空值,从而使信息表完备化。通常基于统计学原理,根据初始数据集中其余对象取值的分布情况来对一个缺失值进行填充。数据挖掘中常用的有以下几种补齐方法:
人工填写(filling manually)
由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。
特殊值填充(Treating Missing Attribute values as Special values)
将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。这样将形成另一个有趣的概念,可能导致严重的数据偏离,一般不推荐使用。
平均值填充(Mean/Mode Completer)
将初始数据集中的属性分为数值属性和非数值属性来分别进行处理。
如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;
如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。与其相似的另一种方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,用于求平均的值并不是从数据集的所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。
这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。
热卡填充(Hot deck imputation,或就近补齐)
对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。
K最近距离邻法(K-means clustering)
先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。
使用所有可能的值填充(Assigning All Possible values of the Attribute)
用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。
组合完整化方法(Combinatorial Completer)
用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。
回归(Regression)
基于完整的数据集,建立回归方程。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充。当变量不是线性相关时会导致有偏差的估计。
期望值最大化方法(Expectation maximization,EM)
EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法。在每一迭代循环过程中交替执行两个步骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用于下步的迭代。算法在E步和M步之间不断迭代直至收敛,即两次迭代之间的参数变化小于一个预先给定的阈值时结束。该方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。
多重填补(Multiple Imputation,MI)
多重填补方法分为三个步骤:
为每个空值产生一套可能的填补值,这些值反映了无响应模型的不确定性;每个值都被用来填补数据集中的缺失值,产生若干个完整数据集合。
每个填补数据集合都用针对完整数据集的统计方法进行统计分析。
对来自各个填补数据集的结果进行综合,产生最终的统计推断,这一推断考虑到了由于数据填补而产生的不确定性。该方法将空缺值视为随机样本,这样计算出来的统计推断可能受到空缺值的不确定性的影响。该方法的计算也很复杂。
C4.5方法
通过寻找属性间的关系来对遗失值填充。它寻找之间具有最大相关性的两个属性,其中没有遗失值的一个称为代理属性,另一个称为原始属性,用代理属性决定原始属性中的遗失值。这种基于规则归纳的方法只能处理基数较小的名词型属性。
就几种基于统计的方法而言,删除元组法和平均值法差于热卡填充法、期望值最大化方法和多重填充法;回归是比较好的一种方法,但仍比不上hot deck和EM;EM缺少MI包含的不确定成分。值得注意的是,这些方法直接处理的是模型参数的估计而不是空缺值预测本身。它们合适于处理无监督学习的问题,而对有监督学习来说,情况就不尽相同了。譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。
不处理
补齐处理只是将未知值补以我们的主观估计值,不一定完全符合客观事实,在对不完备信息进行补齐处理的同时,我们或多或少地改变了原始的信息系统。而且,对空值不正确的填充往往将新的噪声引入数据中,使挖掘任务产生错误的结果。因此,在许多情况下,我们还是希望在保持原始信息不发生变化的前提下对信息系统进行处理。
不处理缺失值,直接在包含空值的数据上进行数据挖掘的方法包括贝叶斯网络和人工神经网络等。
贝叶斯网络提供了一种自然的表示变量间因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。贝叶斯网络仅适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚的情况。否则直接从数据中学习贝叶斯网的结构不但复杂性较高(随着变量的增加,指数级增加),网络维护代价昂贵,而且它的估计参数较多,为系统带来了高方差,影响了它的预测精度。
人工神经网络可以有效的对付缺失值,但人工神经网络在这方面的研究还有待进一步深入展开。
知乎上的一种方案:
4.把变量映射到高维空间。比如性别,有男、女、缺失三种情况,则映射成3个变量:是否男、是否女、是否缺失。连续型变量也可以这样处理。比如Google、网络的CTR预估模型,预处理时会把所有变量都这样处理,达到几亿维。这样做的好处是完整保留了原始数据的全部信息、不用考虑缺失值、不用考虑线性不可分之类的问题。缺点是计算量大大提升。
而且只有在样本量非常大的时候效果才好,否则会因为过于稀疏,效果很差。
总结
大多数数据挖掘系统都是在数据挖掘之前的数据预处理阶段采用第一、第二类方法来对空缺数据进行处理。并不存在一种处理空值的方法可以适合于任何问题。无论哪种方式填充,都无法避免主观因素对原系统的影响,并且在空值过多的情形下将系统完备化是不可行的。从理论上来说,贝叶斯考虑了一切,但是只有当数据集较小或满足某些条件(如多元正态分布)时完全贝叶斯分析才是可行的。而现阶段人工神经网络方法在数据挖掘中的应用仍很有限。值得一提的是,采用不精确信息处理数据的不完备性已得到了广泛的研究。不完备数据的表达方法所依据的理论主要有可信度理论、概率论、模糊集合论、可能性理论,D-S的证据理论等。
⑶ 对于缺失值的处理
建议:不同场景下的数据缺失机制不同,这需要工程师基于对业务选择合适的填充方法。
如何判断缺失值类型?
缺失值的分类按照数据缺失机制可分为:
可忽略的缺失
不可忽略的缺失
平常工作中遇到的缺失值大部分情况下是随机的(缺失变量和其他变量有关)
这个就可以用estimator来做了,选其中一个变量(y),然后用其他变量作为X,随便选个值填充X的缺失部分,用X train一个estimator,再预测y的缺失部分(大致思路)
此外有些数据是符合某种分布的,利用这个分布呢也可以填充缺失的数据,如(EM算法)
处理缺失数据的三个标准:
1. 非偏置的参数估计
不管你估计means, regressions或者是odds ratios,都希望参数估计可以准确代表真实的总体参数。在统计项中,这意味着估计需要是无偏的。有缺失值可能会影响无偏估计,所以需要处理。
2. 有效的能力:
删除缺失数据会降低采样的大小,因此会降低power。如果说问题是无偏的,那么得到的结果会是显着的,那么会有足够的能力来检验这个效力(have adequate power to detect your effects)。反之,整个检测可能失效。
3. 准确的标准差(影响p值和置信区间):
不仅需要参数估计无偏,还需要标准差估计准确,在统计推断中才会有效。
缺失值处理的方法大致分为这几类:1、删除法;2、基于插补的方法;3、基于模型的方法; 4、不处理; 5、映射高维
有些处理方法是基于完全随机缺失假设(MCAR),一般来说,当数据不是 MCAR 而 是随机缺失(MAR)时,这些方法是不适用的;而有些方法(如似然估计法)在 MAR 的假设下是适用的,因此,在进行缺失数据处理时,首先需要认真分析缺失数 据产生的原因,然后采取有针对性的补救措施,这样才能够获得无偏或弱偏估计。
此处关于使用多重插补来处理非随机缺失(MNAR)的问题,它其实效果不一定,也可能出现效果倒退的情况,总的说多重更适合MAR
注:此处一元与多元指的是仅有一个特征有缺失值与多个特征有缺失值
对于不同类别的缺失值的处理方法如上图。
以下展开介绍各个方法:
注: k-means插补 与KNN插补很相似,区别在于k-means是利用无缺失值的特征来寻找最近的N个点,然后用这N个点的我们所需的缺失的特征平均值来填充,而KNN则是先用均值填充缺失值再找最近的N个点。
类似的还有 随机回归插补 :也优于纯回归插补
其他单一插补法:
与单一插补方法相比较,多重插补方法充分地考虑了数据的不确定性。多重插补的主要分为三个步骤,综合起来即为:插补、分析、合并。插补步是为每个缺失值都构造出 m 个可能的插补值,缺失模型具有不确定性,这些插补值能体现出模型的这个性质,利用这些可能插补值对缺失值进行插补就得到了 m 个完整数据集。分析步是对插补后的 m 个完整数据集使用一样的统计数据分析方法进行分析,同时得到 m 个统计结果。综合步就是把得到的这 m 个统计结果综合起来得到的分析结果,把这个分析结果作为缺失值的替代值。多重插补构造多个插补值主要是通过模拟的方式对估计量的分布进行推测,然后采用不同的模型对缺失值进行插补,这种插补是随机抽取的方式,这样以来能提高估计的有效性和可靠性。
多重插补-python手册
多重插补法主要有以下几种:
(使用回归、贝叶斯、随机森林、决策树等模型对缺失数据进行预测。)
基于已有的其他字段,将缺失字段作为目标变量进行预测,从而得到较为可能的补全值。如果带有缺失值的列是数值变量,采用回归模型补全;如果是分类变量,则采用分类模型补全。
常见能够自动处理缺失值模型包括:KNN、决策树和随机森林、神经网络和朴素贝叶斯、DBSCAN(基于密度的带有噪声的空间聚类)等。
处理思路:
自动插补 :例如XGBoost会通过training loss rection来学习并找到最佳插补值。
忽略 :缺失值不参与距离计算,例如:KNN,LightGBM
将缺失值作为分布的一种状态 :并参与到建模过程,例如:决策树以及变体。
不基于距离做计算 :因此基于值得距离计算本身的影响就消除了,例如:DBSCAN。
ID3、c4.5、cart、rf到底是如何处理缺失值的?
最精确的做法,把变量映射到高维空间。
比如性别,有男、女缺失三种情况,则映射成3个变量:是否男、否女、是否缺失。连续型变量也可以这样处理。比如Google、 网络的CTR预估模型,预处理时会把所有变量都这样处理,达到几亿维。又或者可根据每个值的频数,将频数较小的值归为一类'other',降低维度。此做法可最大化保留变量的信息。
前推法 (LOCF,Last Observation Carried Forward,将每个缺失值替换为缺失之前的最后一次观测值)与 后推法 (NOCB,Next Observation Carried Backward,与LOCF方向相反——使用缺失值后面的观测值进行填补)
这是分析可能缺少后续观测值的纵向重复测量数据的常用方法。纵向数据在不同时间点跟踪同一样本。当数据具有明显的趋势时,这两种方法都可能在分析中引入偏差,表现不佳。
线性插值 。此方法适用于具有某些趋势但并非季节性数据的时间序列。
季节性调整+线性插值 。此方法适用于具有趋势与季节性的数据。
总而言之,大部分数据挖掘的预处理都会使用比较方便的方法来处理缺失值,比如均值法,但是效果上并不一定好,因此还是需要根据不同的需要选择合适的方法,并没有一个解决所有问题的万能方法。
具体的方法采用还需要考虑多个方面的:
在做数据预处理时,要多尝试几种填充方法,选择表现最佳的即可。
总结来说,没有一个最完美的策略,每个策略都会更适用于某些数据集和数据类型,但再另一些数据集上表现很差。虽然有一些规则能帮助你决定选用哪一种策略,但除此之外,你还应该尝试不同的方法,来找到最适用于你的数据集的插补策略。
当前最流行的方法应该是 删除法、KNN、多重插补法 。
参考文献: 庞新生. 缺失数据处理方法的比较[J]. 统计与决策, 2010(24):152-155.
⑷ 数据挖掘的常用方法有哪些
1、决策树法决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。
2、神经网络法
神经网络法是模拟生物神经系统的结构和功能,是一种通过训练来学习的非线性预测模型,它将每一个连接看作一个处理单元,试图模拟人脑神经元的功能,可完成分类、聚类、特征挖掘等多种数据挖掘任务。神经网络的学习方法主要表现在权值的修改上。其优点是具有抗干扰、非线性学习、联想记忆功能,对复杂情况能得到精确的预测结果;缺点首先是不适合处理高维变量,不能观察中间的学习过程,具有“黑箱”性,输出结果也难以解释;其次是需较长的学习时间。神经网络法主要应用于数据挖掘的聚类技术中。
3、关联规则法
关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
4、遗传算法
遗传算法模拟了自然选择和遗传中发生的繁殖、交配和基因突变现象,是一种采用遗传结合、遗传交叉变异及自然选择等操作来生成实现规则的、基于进化理论的机器学习方法。它的基本观点是“适者生存”原理,具有隐含并行性、易于和其他模型结合等性质。主要的优点是可以处理许多数据类型,同时可以并行处理各种数据;缺点是需要的参数太多,编码困难,一般计算量比较大。遗传算法常用于优化神经元网络,能够解决其他技术难以解决的问题。
5、聚类分析法
聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。根据定义可以把其分为四类:基于层次的聚类方法;分区聚类算法;基于密度的聚类算法;网格的聚类算法。常用的经典聚类方法有K-mean,K-medoids,ISODATA等。
6、模糊集法
模糊集法是利用模糊集合理论对问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。模糊集合理论是用隶属度来描述模糊事物的属性。系统的复杂性越高,模糊性就越强。
7、web页挖掘
通过对Web的挖掘,可以利用Web的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。
8、逻辑回归分析
反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。
9、粗糙集法
是一种新的处理含糊、不精确、不完备问题的数学工具,可以处理数据约简、数据相关性发现、数据意义的评估等问题。其优点是算法简单,在其处理过程中可以不需要关于数据的先验知识,可以自动找出问题的内在规律;缺点是难以直接处理连续的属性,须先进行属性的离散化。因此,连续属性的离散化问题是制约粗糙集理论实用化的难点。
10、连接分析
它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于企业的研究。
⑸ 数据挖掘的方法有哪些
神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
决策树方法
决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
粗集方法
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。
覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
统计分析方法
在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。
模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。
关于数据挖掘的方法有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑹ 数据分析中缺失值的处理
数据缺失在许多研究领域都是一个复杂的问题,对数据挖掘来说,缺失值的存在,造成了以下影响:
1.系统丢失了大量的有用信息
2.系统中所表现出的不确定性更加显着,系统中蕴涵的确定性成分更难把握
3.包含空值的数据会使挖掘过程陷入混乱,导致不可靠的输出
数据挖掘算法本身更致力于避免数据过分拟合所建的模型,这一特性使得它难以通过自身的算法去很好地处理不完整数据。因此,缺失值需要通过专门的方法进行推导、填充等,以减少数据挖掘算法与实际应用之间的差距。
1.列表显示缺失值 mice包 md.pattern( )
2.图形探究缺失值 VIM包
3.用相关性探索缺失值
1.人工填写
由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。然而一般来说,该方法很费时,当数据规模很大、空值很多的时候,该方法是不可行的。
2.特殊值填充
将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。这样将形成另一个有趣的概念,可能导致严重的数据偏离,一般不推荐使用。
3.平均值填充
将信息表中的属性分为数值属性和非数值属性来分别进行处理。如果空值是数值型的,就根据该属性在其他所有对象的取值的平均值来填充该缺失的属性值;如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多的值(即出现频率最高的值)来补齐该缺失的属性值。另外有一种与其相似的方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,缺失属性值的补齐同样是靠该属性在其他对象中的取值求平均得到,但不同的是用于求平均的值并不是从信息表所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。这两种数据的补齐方法,其基本的出发点都是一样的,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推测缺失值。
4.热卡填充
对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺点在于难以定义相似标准,主观因素较多。
5.K最近距离邻法
先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。
同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。
6.使用所有可能的值填充
用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大,可能的测试方案很多。
7.组合完整化方法
用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。
8.回归
基于完整的数据集,建立回归方程(模型)。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充,当变量不是线性相关或预测变量高度相关时会导致有偏差的估计(SPSS菜单里有这种方法)
9.期望值最大化方法
EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法。在每一迭代循环过程中交替执行两个步骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用于下步的迭代。算法在E步和M步之间不断迭代直至收敛,即两次迭代之间的参数变化小于一个预先给定的阈值时结束。该方法可能会陷入局部极值,收敛速度也不是很快,并且计算很复杂。(SPSS菜单里有这种方法)
10.1多重插补原理
多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。
10.2多重填补在SPSS中的实现
10.2.1缺失模式分析
分析>多重归因>分析模式
10.2.2缺失值的多重填充
分析>多重归因>归因缺失数据值
10.2.3采用填充后的数据建模
10.3多重填补在R中的实现(基于mice包)
实例:
11.C4.5方法
通过寻找属性间的关系来对遗失值填充。它寻找之间具有最大相关性的两个属性,其中没有遗失值的一个称为代理属性,另一个称为原始属性,用代理属性决定原始属性中的遗失值。这种基于规则归纳的方法只能处理基数较小的名词型属性。
就几种基于统计的方法而言,删除元组法和平均值填充法差于热卡填充法、期望值最大化方法和多重填充法;回归是比较好的一种方法,但仍比不上热卡填充和期望值最大化方法;期望值最大化方法缺少多重填补包含的不确定成分。值得注意的是,这些方法直接处理的是模型参数的估计而不是空缺值预测本身。它们合适于处理无监督学习的问题,而对有监督学习来说,情况就不尽相同了。譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。
补齐处理只是将未知值补以我们的主观估计值,不一定完全符合客观事实,在对不完备信息进行补齐处理的同时,我们或多或少地改变了原始的信息系统。而且,对空值不正确的填充往往将新的噪声引入数据中,使挖掘任务产生错误的结果。因此,在许多情况下,我们还是希望在保持原始信息不发生变化的前提下对信息系统进行处理。
直接在包含空值的数据上进行数据挖掘,这类方法包括贝叶斯网络和人工神经网络等。
贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。贝叶斯网络仅适合于对领域知识具有一定了解的情况,至少对变量间的依赖关系较清楚的情况。否则直接从数据中学习贝叶斯网的结构不但复杂性较高(随着变量的增加,指数级增加),网络维护代价昂贵,而且它的估计参数较多,为系统带来了高方差,影响了它的预测精度。当在任何一个对象中的缺失值数量很大时,存在指数爆炸的危险。人工神经网络可以有效的对付空值,但人工神经网络在这方面的研究还有待进一步深入展开。人工神经网络方法在数据挖掘应用中的局限性。
多数统计方法都假设输入数据是完整的且不包含缺失值,但现实生活中大多数数据集都包含了缺失值。因此,在进行下一步分析前,你要么删除,要么用合理的数值代理它们,SPSS、R、Python、SAS等统计软件都会提供一些默认的处理缺失值方法,但这些方法可能不是最优的,因此,学习各种各样的方法和他们的分支就显得非常重要。Little和Rubin的《Sstatistical Analysis With Missing Data 》是缺失值领域里经典的读本,值得一看。