⑴ 什么是数据集成,哪些需要数据集成
数据采集简单的将就是将各个不同的应用系统,不同地方的数据进行集成,将异构、冗余的的数据进行整理,使得数据能够共享。
一般的企业都需要数据集成,帮助其对数据质量进行处理,数据共享后方便数据的查询与分析,有助于后期的决策指导。
开发数据集成的主要有中软卓成,看点在于数据共享、质量处理和可视化视图展示等。
⑵ 大数据服务平台是什么有什么用
现今社会每时每刻都在产生数据,企业内部的经营交易信息、物联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,我们身边处处都有大数据。而大数据服务平台则是一个集数据接入、数据处理、数据存储、查询检索、分析挖掘等、应用接口等为一体的平台,然后通过在线的方式来提供数据资源、数据能力等来驱动业务发展的服务,国外如Amazon ,Oracle,IBM,Microsoft...国内如华为,商理事等公司都是该服务的践行者。
⑶ 大数据和BI商业智能有何区别有何相关_bi商业智能是做什么的
之所以要区分大数据应用与BI(商业智能),是因为大数据应用与BI、数据挖掘等,并没有一个相对完整的认知。
BI()即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
伴随着BI的发展,是ETL,数据集成平台等概念的提出。ETL,ExtractionLoading,数据提取、转换和加载,数据集成平台主要功能对各种业务数据进行抽取和相关转化,以此来满足BI、数据仓库对数据格式和内容挖掘的要求。
数据集成平台的基础工作与ETL有很大的相似性,其主要功能是实祥兆现不同系统不同格式数据地抽取,并且按照目标需求转化成为相应的格式。数据集成开始是点对点的,慢慢地发现这种模式对于系统之间,不同所有权的企业数据流向以及数据标准控制很难,为谨宴拦此,诞生了对统一企业数据平台的需求,来实现企业级之间的数据交互。
数据集成平台就像网络中Hub,可以连接所有应用系统,实现系统之间数据的互通有无。数据集成平台以BI、数据仓库需求而产生,现在已经跨越了最初的需求,上升到祥胡了一个更高的阶段。
如今大数据应用更多关注非结构化数据,更多谈论互联网,Twitter、Facebook、博客等非结构化数据,如此理解大数据应用,显然就有些走偏了。结构化数据也属于大数据,且呈现出相同的特点和特征,如数据量大,增长越来越快,对数据处理要求高等。
结构化数据是广义大数据中含金量或者价值密度最高的一部分数据,与之相比,非结构化数据含金量高但价值密度低。在Hadoop平台出现之前,没有人谈论大数据。数据应用主要是结构化数据,多采用IBM、HP等老牌厂商的小型机或服务器设备。
采用传统方法处理这些价值密度低的非结构化数据,被认为是不值得的,因为其产出实在是有限。Hadoop平台出现之后,提供了一种开放的、廉价的、基于普通商业硬件的平台,其核心是分布式大规模并行处理,从而为非结构化数据处理创造条件。
大数据应用的数据来源应该包括结构化数据,如各种数据库、各种结构化文件、消息队列和应用系统数据等,其次才是非结构化数据,又可以进一步细分为两部分,一是社交媒体,如Twitter、Facebook、博客等产生的数据,包括用户点击的习惯/特点,发表的评论,评论的特点,网民之间的关系等,这些都构成了大数据来源。另外一部分数据,也是数据量比较大的数据,就是机器设备以及传感器所产生的数据。以电信行业为例,CDR、呼叫记录,这些数据都属于原始传感器数据,主要来自路由器或者基站。此外,手机的置传感器,各种手持设备、门禁系统,摄像头、ATM机等,其数据量也非常巨大。
对于分析大数据的工具,目前所有的分析工具都侧重于结构化分析,例如针对社交媒体评论方向的分析,根据特定的词频或者语义,通过统计正面/负面评论的比例,来确定评论性质。如果有一个应用系统是接收结构化数据的,例如一个分析系统,接收这些语义就可以便于分析。(速鸿科技-BI商业智能大数据分析工具与服务提供商)
⑷ 什么是数据集成
数据集成项目有多种类型,主要包括:
企业数据仓库:从众多的系统中提取数据到通用数据仓库,供报告、分析或商业情报之用
数据移植和合并:将现有系统的数据转化或合并为新系统和应用的格式和结构
主数据管理(MDM):生成单一的视图、集中注册,或客户、产品、供应商等主数据的数据集中地
云计算的数据集成:用软件即服务(SaaS)应用集成留在公司内的数据
运营数据集成:跨应用或数据库进行实时的数据访问、转化和交付
B2B 数据交换:跨企业边界集成客户/合作伙伴/供应商数据
信息使用期限管理:着重于应用和数据库存档、测试数据管理、数据隐私和应用淘汰。