导航:首页 > 数据处理 > 怎么做大数据

怎么做大数据

发布时间:2022-04-15 19:46:54

A. 如何进行大数据分析及处理

大数据的分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2. 数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。大数据的技术数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取:关系数据库、NOSQL、SQL等。基础架构:云存储、分布式文件存储等。数据处理:自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)模型预测:预测模型、机器学习、建模仿真。结果呈现:云计算、标签云、关系图等。大数据的处理1. 大数据处理之一:采集大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。2. 大数据处理之二:导入/预处理虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。3. 大数据处理之三:统计/分析统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。4. 大数据处理之四:挖掘与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。End.

B. 调研报告大数据分析怎么做

1、明确思路


明确数据分析的目的以及思路是确保数据分析过程有效进行的首要条件。它作用的是可以为数据的收集、处理及分析提供清晰的指引方向。可以说思路是整个分析流程的起点。首先目的不明确则会导致方向性的错误。当明确目的后,就要建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。


2、收集数据


收集数据是按照确定的数据分析框架收集相关数据的过程,它为数据分析提供了素材和依据。这里所说的数据包括第一手数据与第二手数据,第一手数据主要指可直接获取的数据,第二手数据主要指经过加工整理后得到的数据。


3、处理数据


处理数据是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、杂乱无章、难以理解的数据中,抽取并推导出对解决问题有价值、有意义的数据。数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。


4、分析数据


分析数据是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。由于数据分析多是通过软件来完成的,这就要求数据分析师不仅要掌握各种数据分析方法,还要熟悉数据分析软件的操作。而数据挖掘其实是一种高级的数据分析方法,就是从大量的数据中挖掘出有用的信息,它是根据用户的特定要求,从浩如烟海的数据中找出所需的信息,以满足用户的特定需求。


5、展现数据


一般情况下,数据是通过表格和图形的方式来呈现的,我们常说用图表说话就是这个意思。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形。


6、撰写报告


数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,供决策者参考。一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,同时也失去了报告的意义,因为我们最初就是为寻找或者求证一个结论才进行分析的,所以千万不要舍本求末。最后,好的分析报告一定要有建议或解决方案。

C. 大数据分析怎么做最好

数据分析是基于商业目的,有目的的进行收集、整理、加工和分析数据,提炼有价信息的一个过程。

其过程概括起来主要包括:明确分析目的与框架、数据收集、数据处理、数据分析、数据展现和撰写报告等6个阶段。

一、明确分析目的与框架

一个分析项目,你的数据对象是谁?商业目的是什么?要解决什么业务问题?数据分析师对这些都要了然于心。

基于商业的理解,整理分析框架和分析思路。例如,减少新客户的流失、优化活动效果、提高客户响应率等等。不同的项目对数据的要求,使用的分析手段也是不一样的。

二、数据收集

数据收集是按照确定的数据分析和框架内容,有目的的收集、整合相关数据的一个过程,它是数据分析的一个基础。

三、数据处理

数据处理是指对收集到的数据进行加工、整理,以便开展数据分析,它是数据分析前必不可少的阶段。这个过程是数据分析整个过程中最占据时间的,也在一定程度上取决于数据仓库的搭建和数据质量的保证。

数据处理主要包括数据清洗、数据转化等处理方法。

四、数据分析

数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规律,为商业目提供决策参考。

到了这个阶段,要能驾驭数据、开展数据分析,就要涉及到工具和方法的使用。其一要熟悉常规数据分析方法,最基本的要了解例如方差、回归、因子、聚类、分类、时间序列等多元和数据分析方法的原理、使用范围、优缺点和结果的解释;其二是熟悉1+1种数据分析工具,Excel是最常见,一般的数据分析我们可以通过Excel完成,后而要熟悉一个专业的分析软件,如数据分析工具SPSS/SAS/R/Matlab/Tableau/QlikView/大数据魔镜(国产)等,便于进行一些专业的统计分析、数据建模等。

五、数据展现

一般情况下,数据分析的结果都是通过图、表的方式来呈现,俗话说:字不如表,表不如图。。借助数据展现手段,能更直观的让数据分析师表述想要呈现的信息、观点和建议。。

常用的图表包括饼图、折线图、柱形图/条形图、散点图、雷达图等、金字塔图、矩阵图、漏斗图、帕雷托图等。

六、撰写报告

最后阶段,就是撰写数据分析报告,这是对整个数据分析成果的一个呈现。通过分析报告,把数据分析的目的、过程、结果及方案完整呈现出来,以供商业目的提供参考。

一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。

另外,数据分析报告需要有明确的结论、建议和解决方案,不仅仅是找出问题,后者是更重要的,否则称不上好的分析,同时也失去了报告的意义,数据的初衷就是为解决一个商业目的才进行的分析,不能舍本求末。

D. 大数据怎么做

如果对大数据了解不多的话建议体系化的看课程视频跟着多易教育的老师好好学习学习。

E. 互联网公司是如何做大数据的

互联网公司是如何做大数据的
大数据”炙手可热,很多企业都不会错失机会,谷歌已经从一个网页索引发展成为一个实时数据中心枢纽,可以估量任何可以测量的数据,将输入的查询与所有可用数据相匹配,确定用户查找的信息;对脸谱网来说大数据就是“人”,公司也利用这一点在十几年之内成为世界上最大的公司之一。
亚马逊通过分析用户习惯,将用户与其他可能符合用户需求的产品和建议相匹配;领英帮助求职者根据自己的技能和经验来匹配空缺职位,帮助招聘人员找到与特定资料相匹配的人才,这些都是大数据应用的典型例子,但也只是其中一部分,越来越多的数据易获得,复杂工具也会随之涌现,大数据的利用可以改变我们个人生活和商业活动。
当下,每个人都听说过人们如何利用大数据治愈癌症、终结恐怖主义和养活饥饿人口来改变世界。
当然,也很明显,有些人正利用它来赚大钱——据估计,到2030年,世界经济将增加15万亿美元。
很多人可能会想“那太好了,但实际上和我没什么关系。”只有拥有数百万美元资产的大型科技公司才会真正受益。那你需要大量的数据才能开始一项新的研究吗?
其实并不是这样的。事实上,利用近年在数据收集、分析上的巨大突破,很容易改善我们的个人和商业生活。很多人先前可能没有认识到这点。
以下是大数据作为日常生活工具和服务的一部分的一些细节。
谷歌——语义分析与用户画像
尽管谷歌并没有把自己标榜成数据公司,但实际上它的确是数据宝库和处理问题的工具。它已经从一个网页索引发展成为一个实时数据中心枢纽,几乎可以估量任何可以测量的数据(比如:天气信息、旅行延迟、股票和股份、购物……以及其他很多事情)。
大数据分析——也就是说,当我们进行搜索时大数据就会起作用,可以使用工具来对数据分类和理解。谷歌计算程序运行复杂的算法,旨在将输入的查询与所有可用数据相匹配。它将尝试确定你是否正在寻找新闻、事实、人物或统计信息,并从适当的数据库中提取数据。
对于更复杂的操作,例如翻译,谷歌会调用其他基于大数据的内置算法。谷歌的翻译服务研究了数以百万计的翻译文本或演讲稿,旨在为顾客提供最准确的解释。
经常利用大数据分析的对象从最大的企业到单人乐队,当他们通过谷歌的Adwords进行广告宣传时就是对大数据的利用。通过分析我们浏览的网页(很明显能看出我们喜欢什么网页),谷歌可以向我们展示我们可能感兴趣的产品和服务的广告。广告商使用Adwords和谷歌分析等其他服务,以吸引符合其客户资料的人员到其网站和商店时,广告商就利用了大数据分析。
脸谱网——图像识别与“人”的大数据
尽管脸谱网与谷歌在市场营销上差异巨大,但实际上它们的业务和数据模式非常相似。众所周知,两个公司都选择将自己的企业形象定位重点放在大数据方面。
对谷歌来说,大数据是在线信息、数据和事实。对脸谱网来说大数据就是“人”。脸谱网让我们与朋友和家人保持联系越来越方便,利用这个巨大的吸引力,该公司在十几年之内成为世界上最大的公司之一。这也意味着他们收集了大量的数据,同时我们也可以自己使用这些大数据。当我们搜索老朋友时,大数据就会发挥作用,将我们的搜索结果与我们最有可能联系的人进行匹配。
由脸谱网开创的先进技术包括图像识别——一种大数据技术,通过利用数百万种其他图像进行训练,能教会机器识别图片或视频中的主题或细节。在我们告诉它图片中的人是谁之前,机器可以通过标签来识别图片中的人。这也是为什么,当我们的朋友分享或给图片“点赞”时,如果它发现我们喜欢看例如婴儿或猫的图片,在我们的信息流中就会看到更多这种类型的图片。
对人们兴趣及其利益的详细了解也使脸谱网能够向任何企业出售极具针对性的广告。脸谱网可以帮助企业根据详细的人口统计数据和兴趣数据找到潜在客户,或者可以仅仅让他们通过查找与企业已有客户相似的其他客户来完成他们的大数据“魔术”。
亚马逊——基于大数据的推荐引擎
亚马逊作为世界上最大的在线商店,也是世界上最大的数据驱动型组织之一。亚马逊和本文提到的其他互联网巨头之间的差别很大程度上取决于市场营销。与谷歌和一样,亚马逊提供了广泛的在线服务,包括信息搜索、关注朋友和家人的账号以及广告,但其品牌建立在最初以购物闻名的服务上。
亚马逊将我们浏览和购买的产品与全球数百万其他客户进行比较。通过分析我们的习惯,可以将我们与其他可能符合我们需求的产品和建议相匹配。大数据技术在亚马逊的应用就是推荐引擎,而亚马逊是推荐引擎的鼻祖,其也是最复杂的。除了购物,亚马逊还让客户利用自己的平台赚钱。任何在自己的平台上建立交易的人都会受益于数据驱动的推荐,从理论上讲,这将吸引合适的客户来购买产品。
领英——被筛选过的精准大数据
如果你是一名雇主,或是正在找工作的人,领英会提供一些可以帮助你的大数据。
求职者可以根据自己的技能和经验来匹配空缺职位,甚至可以找到与公司其他员工以及其他可能竞争该职位的员工的数据。
对招聘人员来说,领英的大数据可以找到与特定资料相匹配的人才,例如现任员工或前雇员。
领英对其数据采取了“围墙的花园”方式(注:“围墙花园”是相对于“完全开放”的互联网,把用户限制在一个特定的范围内,允许用户访问指定的内容),当你选择在何处寻找和使用大数据时,这个不同之处值得考虑。领英的招聘人员和申请人的服务都是由公司内部和由服务本身控制的数据进行的,而谷歌是(在美国也提供招聘信息)从大量外部资源中获取收数据。领英的方法提供了潜在的更高质量的信息,而另一方面,它可能不全面。谷歌的方法提供了更大容量的数据,但这些数据可能是你想要的,也可能不是。
这些只是应用大数据的几种方式——远非资源丰富的公司和技术精英的工具,而是我们大部分人在日常生活中已经从中受益的东西。随着越来越多的数据变得容易获取,越来越复杂的工具涌现出来,从中获得价值,肯定会有更多的数据产生。

F. 如何入门大数据

大数据
数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据。
但从狭义上来看,我认为数据科学就是解决三个问题:
1. data pre-processing;(数据预处理)
2. data interpretation;(数据解读)
3.data modeling and analysis.(数据建模与分析)
这也就是我们做数据工作的三个大步骤:
1、原始数据要经过一连串收集、提取、清洗、整理等等的预处理过程,才能形成高质量的数据;
2、我们想看看数据“长什么样”,有什么特点和规律;
3、按照自己的需要,比如要对数据贴标签分类,或者预测,或者想要从大量复杂的数据中提取有价值的且不易发现的信息,都要对数据建模,得到output。
这三个步骤未必严谨,每个大步骤下面可能依问题的不同也会有不同的小步骤,但按我这几年的经验来看,按照这个大思路走,数据一般不会做跑偏。
这样看来,数据科学其实就是门复合型的技术,既然是技术就从编程语言谈起吧,为了简练,只说说R和Python。但既然是荐数据科学方面的书,我这里就不提R/Python编程基础之类的书了,直接上跟数据科学相关的。
R programming
如果只是想初步了解一下R语言已经R在数据分析方面的应用,那不妨就看看这两本:
R in action:我的R语言大数据101。其实对于一个没有任何编程基础的人来说,一开始就学这本书,学习曲线可能会比较陡峭。但如果配合上一些辅助材料,如官方发布的R basics(http://cran.r-project.org/doc/contrib/usingR.pdf),stackoverflow上有tag-R的问题集(Newest ‘r’ Questions),遇到复杂的问题可在上面搜索,总会找到解决方案的。这样一来,用这本书拿来入门学习也问题不大。而且这本书作者写得也比较轻松,紧贴实战。
Data analysis and graphics using R:使用R语言做数据分析的入门书。这本书的特点也是紧贴实战,没有过多地讲解统计学理论,所以喜欢通过情境应用来学习的人应该会喜欢这本入门书。而且这本书可读性比较强,也就是说哪怕你手头没电脑写不了代码,有事没事拿出这本书翻一翻,也能读得进去。
但如果你先用R来从事实实在在的数据工作,那么上面两本恐怕不够,还需要这些:
Modern applied statistics with S:这本书里统计学的理论就讲得比较多了,好处就是你可以用一本书既复习了统计学,又学了R语言。(S/Splus和R的关系就类似于Unix和Linux,所以用S教程学习R,一点问题都没有)
Data manipulation with R:这本书实务性很强,它教给你怎么从不同格式的原始数据文件里读取、清洗、转换、整合成高质量的数据。当然和任何一本注重实战的书一样,本书也有丰富的真实数据或模拟数据供你练习。对于真正从事数据处理工作的人来说,这本书的内容非常重要,因为对于任何研究,一项熟练的数据预处理技能可以帮你节省大量的时间和精力。否则,你的研究总是要等待你的数据。
R Graphics Cookbook:想用R做可视化,就用这本书吧。150多个recipes,足以帮你应付绝大多数类型的数据。以我现在极业余的可视化操作水平来看,R是最容易做出最漂亮的图表的工具了。
An introction to statistical learning with application in R:这本书算是着名的the element of statistical learning的姊妹篇,后者更注重统计(机器)学习的模型和算法,而前者所涉及的模型和算法原没有后者全面或深入,但却是用R来学习和应用机器学习的很好的入口。
A handbook of statistical analysis using R:这本书内容同样非常扎实,很多统计学的学生就是用这本书来学习用R来进行统计建模的。
Python
Think Python,Think Stats,Think Bayes:这是Allen B. Downey写的着名的Think X series三大卷。其实是三本精致的小册子,如果想快速地掌握Python在统计方面的操作,好好阅读这三本书,认真做习题,答案链接在书里有。这三本书学通了,就可以上手用Python进行基本的统计建模了。
Python For Data Analysis: 作者是pandas的主要开发者,也正是Pandas使Python能够像R一样拥有dataframe的功能,能够处理结构比较复杂的数据。这本书其实analysis讲得不多,说成数据处理应该更合适。掌握了这本书,处理各种糟心的数据就问题不大了。
Introction to Python for Econometrics, Statistics and Data Analysis:这本书第一章就告诉你要安装Numpy, Scipy, Matplotlib, Pandas, IPython等等。然后接下来的十好几章就是逐一介绍这几个库该怎么用。很全面,但读起来比较枯燥,可以用来当工具书。
Practical Data Analysis: 这本书挺奇葩,貌似很畅销,但作者把内容安排得东一榔头西一棒子,什么都讲一点,但一个都没讲透。这本书可以作为我们学习数据分析的一个索引,看到哪块内容有意思,就顺着它这个藤去摸更多的瓜。
Python Data Visualization Cookbook: 用Python做可视化的教材肯定不少,我看过的也就这一本,觉得还不错。其实这类书差别都不会很大,咬住一本啃下来就是王道。
Exploratory Data Analysis 和 Data Visualization
Exploratory Data Analysis:John Tukey写于1977年的经典老教材,是这一领域的开山之作。如今EDA已经是统计学里的重要一支,但当时还是有很多人对他的工作不屑一顾。可他爱数据,坚信数据可以以一种出人意料的方式呈现出来。正是他的努力,让数据可视化成为一门无比迷人的技术。但这本书不推荐阅读了,内容略过时。要想完整地了解EDA,推荐下一本:
Exploratory Data Analysis with MATLAB:这本书虽然标题带了个MATLAB,但实际上内容几乎没怎么讲MATLAB,只是每讲一个方法的时候就列出对应的MATALB函数。这本书的重要之处在于,这是我读过的讲EDA最系统的一本书,除了对visualization有不输于John Tucky的讲解外,对于高维的数据集,通过怎样的方法才能让我们从中找到潜在的pattern,这本书也做了详尽的讲解。全书所以案例都有对应的MATALB代码,而且还提供了GUI(图形用户界面)。所以这本书学起来还是相当轻松愉悦的。
Visualize This:中译本叫“鲜活的数据”,作者是个“超级数据迷”,建立了一个叫http://flowingdata.com的网页展示他的数据可视化作品,这本书告诉你该选择什么样的可视化工具,然后告诉你怎样visualize关系型数据、时间序列、空间数据等,最后你就可以用数据讲故事了。如果你只想感受一下数据可视化是个什么,可以直接点开下面这个链接感受下吧!A tour through the visualization zoo(A Tour Through the Visualization Zoo)
Machine Learning & Data Mining
这一块就不多说了,不是因为它不重要,而是因为它太太太重要。所以这一部分就推两本书,都是”世界名着“,都比较难读,需要一点点地啃。这两本书拿下,基本就算是登堂入室了。其实作为机器学习的延伸和深化,概率图模型(PGM)和深度学习(deep learning)同样值得研究,特别是后者现在简直火得不得了。但PGM偏难,啃K.Daphne那本大作实在太烧脑,也没必要,而且在数据领域的应用也不算很广。deep learning目前工业界的步子迈得比学术界的大,各个domain的应用如火如荼,但要有公认的好教材问世则还需时日,所以PGM和deep learning这两块就不荐书了。
The Element of Statistical Learning:要学机器学习,如果让我只推荐一本书,我就推荐这本巨着。Hastie、Tibshirani、Friedman这三位大牛写书写得太用心了,大厦建得够高够大,结构也非常严谨,而且很有前瞻性,纳入了很多前沿的内容,而不仅仅是一部综述性的教材。(图表也做得非常漂亮,应该是用R语言的ggplot2做的。)这本书注重讲解模型和算法本身,所以需要具备比较扎实的数理基础,啃起这本书来才不会太吃力。事实上掌握模型和算法的原理非常重要。机器学习(统计学习)的库现在已经非常丰富,即使你没有完全搞懂某个模型或算法的原理和过程,只要会用那几个库,机器学习也能做得下去。但你会发现你把数据代进去,效果永远都不好。但是,当你透彻地理解了模型和算法本身,你再调用那几个库的时候,心情是完全不一样的,效果也不一样。
Data Mining: Concepts and Techniques, by Jiawei Han and Micheline Kamber 数据挖掘的教材汗牛充栋,之所以推荐这本韩家炜爷爷的,是因为虽然他这本书的出发点是应用,但原理上的内容也一点没有落下,内容非常完整。而且紧跟时代,更新的很快,我看过的是第二版,就已经加进去了social network analysis这种当时的前沿内容。现在已经有第三版了,我还没看过,但应该也加入了不少新内容。其实这本书并不难读,只是篇幅较长,啃起来比较耗时。
其实这两本书里单拎出来一块内容可能又是几本书的节奏,比如bayesian方法,再拿出两三本书来讲也不为过,我个人用到的比较多,而且也确实有不少好书。但并非是所有data scientist都要用到,所以这一块就不再细说。
还有一些印象比较深刻的书:
Big Data Glossary: 主要讲解大数据处理技术及工具,内容涵盖了NoSQL,MapRece,Storage,Servers,NLP库与工具包,机器学习工具包,数据可视化工具包,数据清洗,序列化指南等等。总之,是一本辞典式的大数据入门指导。
Mining of Massive Datasets:这本书是斯坦福大学Web Mining的讲义,里面很多内容与韩家炜的Data Mining那本书重合,但这本书里详细地讲了MapRece的设计原理,PageRank(Google创业时期的核心排序算法,现在也在不断优化更新)讲解得也比较详细。
Developing Analytic Talent: 作者是个从事了十几年数据工作的geek,技术博客写得很有个人风格,写的内容都比较偏门,通常只有具备相关数据处理经验的人能体会出来,丝毫不照顾初学者的感受。比如他会谈到当数据流更新太快时该怎么办,或者MapRece在什么时候不好用的问题,才不管你懂不懂相关基础原理。所以这本书不太适合初学者阅读。这本书其实是作者的博客文章的集结,用how to become a data scientist的逻辑把他近几年的博客文章串联了起来。
Past, Present and Future of Statistical Science:这本书是由COPSS(统计学社主席委员会,由国际各大统计学会的带头人组成)在50周年出版的一本纪念册,里面有50位统计学家每人分别贡献出的一两篇文章,有的回忆了自己当年如何走上统计学这条路,有的探讨了一些统计学的根本问题,有的谈了谈自己在从事的前沿研究,有的则给年轻一代写下了寄语。非常有爱的一本书。
其它资料
Harvard Data Science:这是H大的Data science在线课,我没有修过,但口碑很好。这门课需要费用8千刀左右,比起华盛顿大学的4千刀的Data science在线课虽贵一倍,但比斯坦福的14千刀要便宜将近一半(而且斯坦福的更偏计算机)。如果想自学,早有好心人分享了slides: (https://drive.google.com/folderview?id=0BxYkKyLxfsNVd0xicUVDS1dIS0k&usp=sharing)和homeworks and solutions: (https://github.com/cs109/content)
PyData:PyData是来自各个domain的用Python做数据的人每年举行一次的聚会,期间会有各路牛人举行一些规模不大的seminar或workshop,有好心人已经把video上传到github,有兴趣的去认领吧(DataTau/datascience-anthology-pydata · GitHub)
工具
R/Python/MATLAB(必备):如果是做数据分析和模型开发,以我的观察来看,使用这三种工具的最多。R生来就是一个统计学家开发的软件,所做的事也自然围绕统计学展开。MATLAB虽然算不上是个专业的数据分析工具,但因为很多人不是专业做数据的,做数据还是为了自己的domain expertise(特别是科学计算、信号处理等),而MATLAB又是个强大无比的Domain expertise工具,所以很多人也就顺带让MATLAB也承担了数据处理的工作,虽然它有时候显得效率不高。Python虽然不是做数据分析的专业软件,但作为一个面向对象的高级动态语言,其开源的生态使Python拥有无比丰富的库,Numpy, Scipy 实现了矩阵运算/科学计算,相当于实现了MATLAB的功能,Pandas又使Python能够像R一样处理dataframe,scikit-learn又实现了机器学习。
SQL(必备):虽然现在人们都说传统的关系型数据库如Oracle、MySQL越来越无法适应大数据的发展,但对于很多人来说,他们每天都有处理数据的需要,但可能一辈子都没机会接触TB级的数据。不管怎么说,不论是用关系型还是非关系型数据库,SQL语言是必须要掌握的技能,用什么数据库视具体情况而定。
MongoDB(可选):目前最受欢迎的非关系型数据库NoSQL之一,不少人认为MongoDB完全可以取代mySQL。确实MongoDB方便易用,扩展性强,Web2.0时代的必需品。
Hadoop/Spark/Storm(可选): MapRece是当前最着名也是运用最广泛的分布式计算框架,由Google建立。Hadoop/Spark/storm都是基于MapRece的框架建立起来的分布式计算系统,要说他们之间的区别就是,Hadoop用硬盘存储数据,Spark用内存存储数据,Storm只接受实时数据流而不存储数据。一言以蔽之,如果数据是离线的,如果数据比较复杂且对处理速度要求一般,就Hadoop,如果要速度,就Spark,如果数据是在线的实时的流数据,就Storm。
OpenRefine(可选):Google开发的一个易于操作的数据清洗工具,可以实现一些基本的清洗功能。
Tableau(可选):一个可交互的数据可视化工具,操作简单,开箱即用。而且图表都设计得非常漂亮。专业版1999美刀,终身使用。媒体和公关方面用得比较多。
Gephi(可选):跟Tableau类似,都是那种可交互的可视化工具,不需要编程基础,生成的图表在美学和设计上也是花了心血的。更擅长复杂网络的可视化。

G. 大数据初学者应该怎么学

大数据大家一定都不陌生,现在这个词几乎是红遍了大江南北,不管是男女老幼几乎都听说过大数据。大数据作为一个火爆的行业,很多人都想从事这方面相关的工作,所以大家就开始加入了学习大数据的行列。

目前,市面上不仅是学习大数据的人数在增加,随之而来的是大数据培训机构数量的迅速上升。因为很多人认为这是一门难学的技术,只有经过培训才能够很好的学习到相关技术,最终完成就业的目的。其实,也并不都是这样的,学习大数据的方法有很多,只有找到适合自己的就能够达到目的。

那么,大数据初学者应该怎么学?

1、如果是零基础的初学者,对于大数据不是很了解,也没有任何基础的话,学习能力弱,自律性差的建议选择大数据培训学习更有效;

2、有一定的基础的学员,虽然对于大数据不是很了解,但有其它方面的编程开发经验,可以尝试去选择自学的方式去学习,如果后期感觉需要大数据培训的话再去报名学习;

3、就是要去了解大数据行业的相关工作都需要掌握哪些内容,然后根据了解的内容去选择需要学习的大数据课程。

大数据学习路线图:

H. 大数据如何入门

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

大数据

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。


Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。


Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。


Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。


Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。


Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。


Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。


Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。


Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。


Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。


Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

I. 初学者如何高效学习大数据技术

【导读】大数据的高薪和发展前景,吸引着越来越多的人想要加入大数据行业,而想做大数据,前提是需要掌握相应的技术,才能获得在行业立足的资本。尤其是很多零基础学习者,学习大数据是需要跨过的第一道关卡。那么,初学者如何高效学习大数据技术?

目前想要转型做大数据的人群当中,零基础的学习者不在少数,对于零基础学习者,比较中肯的建议是不要自学。大数据作为一门新兴技术,市面上能够找到的学习资料非常有限,并且大数据技术不断在更新迭代,自学很难跟上最新技术趋势。

对于大部分零基础学习者来说,想要学大数据,通过大数据培训是效率最高的方式。而市面上的大数据培训,可以分为线上培训和线下培训两种模式,不管是这些机构课程如何宣传,作为初学者,应该重视的是,如果能够达到高效的学习。

大数据线上培训,有直接卖录制好的视频的,也有视频直播课程,相对来说,视频直播课程具有更好的课堂互动性,如果能坚持下来,那么应当也能有一定的收获。

而大数据线下培训,应该说是各种培训模式下,学习效率和学习效果都最好的方式了。大数据线下培训有完备的教学体系,系统化的大数据课程,资深的专业讲师,三管齐下,能够帮助学习者更快地入门,打下良好的基础。

在大数据的学习中,除了基础技术知识的学习,更重要的是理论与实践的结合,毕竟我们最终还是要将技术知识运用到工作实际中,这也是就业当中的核心竞争力来源。

大数据线下培训,拥有良好的硬件环境支持,在不同的学习阶段,还有相应的实战项目来做联系,大大提升学习者的技术实战能力。

以上就是小编今天给大家整理发送的关于“初学者如何高效学习大数据技术?”的全部内容,希望对大家有所帮助。所谓不做不打无准备之仗,总的来说随着大数据在众多行业中的应用,大数据技术工作能力的工程师和开发人员是很吃香的。希望各位大家在学习之前做好准备,下足功夫不要凭空想象的想要取得优异的成绩。

J. 大数据营销怎么做

随着互联网的发展,大数据技术、AI算法技术应用越加普及。大数据在营销中的应用也越加广泛。例如,1.对用户个体特征与行为的分析,例如MobTech企业覆盖138亿+设备,自有数据庞大,利用自有数据与第一方数据匹配,帮助企业做精准的用户画像和标签补充,进而通过数据分析进行广告与营销信息的精准推送,现在的RTB广告等应用则向我们展示了比以前更好的精准性,而其背后靠的是大数据支撑。MobTech用户标签维度达到6000+,覆盖性别、年龄段、收入水平预估、消费倾向、媒介使用倾向等,精细化描述用户的各维度数据。

阅读全文

与怎么做大数据相关的资料

热点内容
开设特种能源技术与工程的院校有哪些 浏览:465
产品价格合计怎么算 浏览:72
如何制作煤气需要热化学程序 浏览:170
深圳的哪个大学有电子信息工程 浏览:770
高粱酒代理商什么牌子好 浏览:669
300元鬼市场在哪里 浏览:649
代理什么酱酒有发展 浏览:270
信息技术兴起于20世纪哪个年代 浏览:282
欠款要是走法律程序需要什么证据 浏览:397
成都购买电动轮椅大市场在哪里 浏览:265
房子过户赠予和交易哪个好 浏览:608
环评审批信息属于什么单位 浏览:776
嵊州领带批发市场有哪些 浏览:279
武汉葵花药店代理怎么样 浏览:136
人事代理是指哪些 浏览:445
红军为什么不投入转会市场 浏览:140
数据库一页多少k 浏览:570
华为换苹果x手机怎么转移数据 浏览:354
张氏绝密技术有哪些 浏览:932
如何在电脑上安装显卡驱动程序 浏览:176