Ⅰ 为什么用Python做数据分析
为什么用Python做数据分析
原因如下:
1、python大量的库为数据分析提供了完整的工具集
python拥有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科学计算方面十分有优势,尤其是pandas,在处理中型数据方面可以说有着无与伦比的优势,已经成为数据分析中流砥柱的分析工具。
2、比起MATLAB、R语言等其他主要用于数据分析语言,python语言功能更加健全
Python具有强大的编程能力,这种编程语言不同于R或者matlab,python有些非常强大的数据分析能力,并且还可以利用Python进行爬虫,写游戏,以及自动化运维,在这些领域中有着很广泛的应用,这些优点就使得一种技术去解决所有的业务服务问题,这就充分的体现的Python有利于各个业务之间的融合。如果使用Python,能够大大的提高数据分析的效率。
3、python库一直在增加,算法的实现采取的方法更加创新
4、python能很方便的对接其他语言,比如c、java等。
Python最大的优点那就是简单易学。Python代码十分容易被读写,最适合刚刚入门的朋友去学习。我们在处理数据的时候,一般都希望数据能够转化成可运算的数字形式,这样,不管是没学过编程的人还是学过编程的人都能够看懂这个数据。
其实现如今,Python是一个面向世界的编程语言,Python对于如今火热的人工智能也有一定的帮助,这是因为人工智能需要的是即时性,而Python是一种非常简洁的语言,同时有着丰富的数据库以及活跃的社区,这样就能够轻松的提取数据,从而为人工智能做出优质的服务。
通过上面的描述,相信大家已经知道了使用Python做数据分析的优点了。Python语言得益于它的简单方便,使得其在大数据、数据分析以及人工智能方面都有十分明显的存在感,对于数据分析从业者以及想要进入数据分析行业的人来说,简单易学容易上手的优势也是一个优势,所以不管大家是否进入数据分析行业,学习Python是没有坏处的。
Python中文网,大量Python视频教程,欢迎学习!
Ⅱ 大数据应该学习什么语言
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。
北大青鸟中博软件学院大数据课堂实拍
Ⅲ 在大数据分析/挖掘领域,哪些编程语言应用最多
一般来详说做数据分析挖掘每种编程语言基本都能做。
做分析方面R语言是强项。
数据可视化是Matlab。
但是挖数据要做爬虫,这个又会用到Java和Python
Python是个全能,在分析方面有Numpy,Scipy等数据分析库,又有很多爬虫库,还有matplotlib的库把数据可视化。
Ⅳ 大数据处理需要用到的编程语言有哪些
R语言:为统计人员开发的一种语言,可以用R语言构建深奥的统计模型、数据探索以及统计分析等
Python语言:Python是数据分析利器,使用Python进行科学计算可以提高效率,Python可以替代Excel进行更高效的数据处理
java语言:Java是一门很适合大数据项目的编程语言,Hadoop、Spark、Storm、Flink、Flume、Kafka、Sqoop等大数据框架和工具都是用Java编写的,因此,大数据会不可避免的使用到Java。
Scala语言:Scala是一门轻松的语言,在JVM上运行,成功地结合了函数范式和面向对象范式
Ⅳ 数据分析用python还是r语言
Python与R语言的共同点:
Python和R在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法。
Python和R两门语言有许多平台适应性,Linux、Windows都可以用,并且代码可移植性强。
Python和R比较贴近MATLAB以及minitab等常用的数学工具。
Python和R语言的区别:
数据结构方面,由于从科学计算的角度出发,R中的数据结构非常简单,主要包含向量、多维数组、列表、数据框;而Python则包含更丰富的数据结构来实现数据更精准的访问和内存控制,多维数组、元组、集合、字典等等。
Python与R对比速度更快,Python可以直接处理上G的数据;R不行,R分析数据时需要先通过数据库把大数据转化为小数据才能交给R做分析,因此R不可能直接分析行为详单,只能分析统计结果。
Python是一套比较平衡的语言,各方面都可以,无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达式和文字处理,Python都有着非常明显的优势,而R在统计方面比较突出。
Python的pandas借鉴了R的dataframes,R中的rvest则参考了Python的beautiful
soup,两种语言在一定程度上存在互补性;通常,我们认为Python比R在计算机编程、网络爬虫上更有优势;而R在统计分析上是一种更高校的独立数据分析工具,所以说Python和R各具备不同的优势,很难抉择。
不过相对于R来说,Python更加简单、易学、语法清晰,适合零基础入门学习,而且掌握Python之后不仅可以从事数据分析岗位工作,还可以从事人工智能、web开发、游戏开发、运维等工作。
Ⅵ 大数据处理需要用到的九种编程语言
大数据处理需要用到的九种编程语言
随着大数据的热潮不断升温,几乎各个领域都有洪水倾泻般的信息涌来,面对用户成千上万的浏览记录、记录行为数据,如果就单纯的Excel来进行数据处理是远远不能满足的。但如果只用一些操作软件来分析,而不怎么如何用逻辑数据来分析的话,那也只是简单的数据处理。
替代性很高的工作,而无法深入规划策略的核心。
当然,基本功是最不可忽略的环节,想要成为数据科学家,对于这几个程序你应该要有一定的认识:
R若要列出所有程序语言,你能忘记其他的没关系,但最不能忘的就是R。从1997年悄悄地出现,最大的优势就是它免费,为昂贵的统计软件像是Matlab或SAS的另一种选择。
但是在过去几年来,它的身价大翻转,变成了资料科学界眼中的宝。不只是木讷的统计学家熟知它,包括WallStreet交易员、生物学家,以及硅谷开发者,他们都相当熟悉R。多元化的公司像是Google、Facebook、美国银行以及NewYorkTimes通通都使用R,它的商业效用持续提高。
R的好处在于它简单易上手,透过R,你可以从复杂的数据集中筛选你要的数据,从复杂的模型函数中操作数据,建立井然有序的图表来呈现数字,这些都只需要几行程序代码就可以了,打个比方,它就像是好动版本的Excel。
R最棒的资产就是活跃的动态系统,R社群持续地增加新的软件包,还有以内建丰富的功能集为特点。目前估计已有超过200万人使用R,最近的调查显示,R在数据科学界里,到目前为止最受欢迎的语言,占了回复者的61%(紧追在后的是39%的Python)。
它也吸引了WallStreet的注目。传统而言,证券分析师在Excel档从白天看到晚上,但现在R在财务建模的使用率逐渐增加,特别是可视化工具,美国银行的副总裁NiallO’Conno说,“R让我们俗气的表格变得突出”。
在数据建模上,它正在往逐渐成熟的专业语言迈进,虽然R仍受限于当公司需要制造大规模的产品时,而有的人说他被其他语言篡夺地位了。
“R更有用的是在画图,而不是建模。”顶尖数据分析公司Metamarkets的CEO,MichaelDriscoll表示,
“你不会在Google的网页排名核心或是Facebook的朋友们推荐算法时看到R的踪影,工程师会在R里建立一个原型,然后再到Java或Python里写模型语法”。
举一个使用R很有名的例子,在2010年时,PaulButler用R来建立Facebook的世界地图,证明了这个语言有多丰富多强大的可视化数据能力,虽然他现在比以前更少使用R了。
“R已经逐渐过时了,在庞大的数据集底下它跑的慢又笨重”Butler说。
所以接下来他用什么呢?
Python如果说R是神经质又令人喜爱的Geek,那Python就是随和又好相处的女生。
Python结合了R的快速、处理复杂数据采矿的能力以及更务实的语言等各个特质,迅速地成为主流,Python比起R,学起来更加简单也更直观,而且它的生态系统近几年来不可思议地快速成长,在统计分析上比起R功能更强。
Butler说,“过去两年间,从R到Python地显着改变,就像是一个巨人不断地推动向前进”。
在数据处理范畴内,通常在规模与复杂之间要有个取舍,而Python以折衷的姿态出现。IPythonNotebook(记事本软件)和NumPy被用来暂时存取较低负担的工作量,然而Python对于中等规模的数据处理是相当好的工具;Python拥有丰富的资料族,提供大量的工具包和统计特征。
美国银行用Python来建立新产品和在银行的基础建设接口,同时也处理财务数据,“Python是更广泛又相当有弹性,所以大家会对它趋之若鹜。”O’Donnell如是说。
然而,虽然它的优点能够弥补R的缺点,它仍然不是最高效能的语言,偶尔才能处理庞大规模、核心的基础建设。Driscoll是这么认为的。
Julia今日大多数的数据科学都是透过R、Python、Java、Matlab及SAS为主,但仍然存在着鸿沟要去弥补,而这个时候,新进者Julia看到了这个痛点。
Julia仍太过于神秘而尚未被业界广泛的采用,但是当谈到它的潜力足以抢夺R和Python的宝座时,数据黑客也难以解释。原因在于Julia是个高阶、不可思议的快速和善于表达的语言,比起R要快的许多,比起Python又有潜力处理更具规模的数据,也很容易上手。
“Julia会变的日渐重要,最终,在R和Python可以做的事情在Julia也可以”。Butler是这么认为的。
就现在而言,若要说Julia发展会倒退的原因,大概就是它太年轻了。Julia的数据小区还在初始阶段,在它要能够和R或Python竞争前,它还需要更多的工具包和软件包。
Driscoll说,它就是因为它年轻,才会有可能变成主流又有前景。
JavaDriscoll说,Java和以Java为基础的架构,是由硅谷里最大的几家科技公司的核心所建立的,如果你从Twitter、Linkedin或是Facebook里观察,你会发现Java对于所有数据工程基础架构而言,是非常基础的语言。
Java没有和R和Python一样好的可视化功能,它也不是统计建模的最佳工具,但是如果你需要建立一个庞大的系统、使用过去的原型,那Java通常会是你最基的选择。
Hadoop and Hive
为了迎合大量数据处理的需求,以Java为基础的工具群兴起。Hadoop为处理一批批数据处理,发展以Java为基础的架构关键;相较于其他处理工具,Hadoop慢许多,但是无比的准确和可被后端数据库分析广泛使用。和Hive搭配的很好,Hive是基于查询的架构下,运作的相当好。
Scala又是另一个以Java为基础的语言,和Java很像,对任何想要进行大规模的机械学习或是建立高阶的算法,Scala会是逐渐兴起的工具。它是善于呈现且拥有建立可靠系统的能力。
“Java像是用钢铁建造的;Scala则是让你能够把它拿进窑烤然后变成钢的黏土”Driscoll说。
Kafka andStorm说到当你需要快速的、实时的分析时,你会想到什么?Kafka将会是你的最佳伙伴。其实它已经出现五年有了,只是因为最近串流处理兴起才变的越来越流行。
Kafka是从Linkedin内诞生的,是一个特别快速的查询讯息系统。Kafka的缺点呢?就是它太快了,因此在实时操作时它会犯错,有时候会漏掉东西。
鱼与熊掌不可兼得,“必须要在准确度跟速度之间做一个选择”,Driscoll说。所以全部在硅谷的科技大公司都利用两个管道:用Kafka或Storm处理实时数据,接下来打开Hadoop处理一批批处理数据系统,这样听起来有点麻烦又会有些慢,但好处是,它非常非常精准。
Storm是另一个从Scala写出来的架构,在硅谷逐渐大幅增加它在串流处理的受欢迎程度,被Twitter并购,这并不意外,因为Twitter对快速事件处理有极大的兴趣。
MatlabMatlab可以说是历久不衰,即使它标价很高;在非常特定的利基市场它使用的相当广泛,包括密集的研究机器学习、信号处理、图像辨识等等。
OctaveOctave和Matlab很像,除了它是免费的之外。然而,在学术信号处理的圈子,几乎都会提到它。
GOGO是另一个逐渐兴起的新进者,从Google开发出来的,放宽点说,它是从C语言来的,并且在建立强大的基础架构上,渐渐地成为Java和Python的竞争者。
这么多的软件可以使用,但我认为不见得每个都一定要会才行,知道你的目标和方向是什么,就选定一个最适合的工具使用吧!可以帮助你提升效率又达到精准的结果。
以上是小编为大家分享的关于大数据处理需要用到的九种编程语言的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅶ 大数据现在用什么语言来做
大数据是一种在获取、存储、管理、分析等方面大大超出了传统数据库软件工具能力范围的数据集合。它具有大量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
未来大数据相关人才缺口巨大。
其实挺多编程语言是相通的,都可以用来做大数据
Java因为其语言的优势,更多人使用Java语言
另外Python语言在数据分析,数据挖掘方面具备优势,精通Java的基础上,再学学Python,有利于提升工作效率
如果你是0基础,想后期走大数据方向,建议先学Java,精通Java后,再转大数据会更容易一些
希望能给你带来参考
Ⅷ 想从事数据分析工作,学什么软件或语言最好
Excel
EXCEL是其中最简单的,倒不是容易而是人人都会。但如果是用来分析的话,图表只是基础,还要学会使用透视图以及VBA函数。Excel的功能其实非常强大,尤其是通过学习VBA,几乎能解决所有的问题,但成本就高了,而且Excel的数据处理量并不是很大,几十万而已,大数据量还要另寻方法。
SPSS
SPSS最初是社会科学统计软件,如果刚入门数据分析,懂点SPSS事非常有好处的,当然前提是要懂SQL。SPSS得使用对人的能力要求不高,编程模块很少使用,通常用于科学、市场之类的调研,在院校中使用较多。
有了以上的基础之后,可能就需要精通一门统计分析软件。
近几年的互联网潮,R语言流行起来了,在互联网行业运用较多。R语言是开源的,学习起来并不容易,需要一个长期的过程。
SPSS刚刚有提到,适用于市场研究,上手较快。如果会编程的话,功能还是蛮强大的。
SAS一般是金融行业应用较广,特别是银行业和医学统计,包括一些制造业也很多。银行业通常会用SAS来做统计,数据挖掘也会用到,价格昂贵,学起来比较难,建议网上寻找一些课程和教材来学。
所以打击爱可以针对自己的行业和实际情况来做选择,以上列举的只是大致情况。
Python
以上就是各种数据分析工具和语言的介绍,其次还要掌握一些第三方工具,这些工具一般偏业务化应用,可视化数据展示类偏多,所以在技术上没有太多要求,不过SQL需要掌握。
Tableau
多次介绍过的一款可视化工具,可视化方面应该是做得最不错的工具了,偏前端分析。不懂python不懂R的可以试试。有点贵,土豪们加油!
Qlikview
相对tableau有点丑,不要喷,毕竟人家走数据处理路线,作为BI产品,数据处理速度还是不错的,取个数不至于像tableau慢。两者像互补兄弟,各有优势,但都一样贵,哈哈!所以对数据处理要求较高的话,建议尝试。
FineBI
国内的可视化软件,bi工具。无功无过,重在稳定和应用,国内有一定市场,企业应用挺广。有一定数据分析基础的同学,应该说很快就能上手,免费版无限用!
还有一些D3之类的chart软件这里由于篇幅就不介绍了,主要偏应用,在工作中使用还是蛮广的。
总体来将,每个工具各有优势,但最关键的还是对于业务的熟悉度,没有远离和思路,任何工具都用不起来,所以在做数据分析时,一定要扎根学习业务和数据建模方法,工具不是万能的!
Ⅸ 想从事数据分析工作,学什么软件或语言最好
做一般的数据分析,很多工具都可以。例如R, Python, Matlab等等。不过就社区规模和质量与学习成本与前景,最好学R,如果想更偏向于General purpose programming,最好还要学Python或者近年来发展迅猛的F#,个人推荐F#,函数式编程是未来的大势所趋,况且F#有神奇的Type Provider,可以方便地调用R, Java,很快PythonProvider和MatlabProvider也会发布了,这样就把几大社区的资源都整合在一起了。如果做大规模数据分析,当然要懂数据库的东西,可以学SQL,用SQLite, MySQL等等来操作关系型数据。如果想做大数据,可以学Hadoop, Hive以及Storm等等,基于大数据平台做数据分析应该没有必要了解太多技术细节,知道如何操作非关系数据,以及实时数据即可。当然,都掌握最好。
从事数据分析一定要选一门编程语言和工具,技多不压身嘛。数据分析的工具有很多,按功能和侧重点来分有统计工具、可视化工具等等。应用最广的也是最常被提到的,无非是Excel、SAS、Python、R等等。那么,这么多工具是否都要学?都适用于什么情况?又应该如何使用呢?ExcelEXCEL是其中最简单的,倒不是容易而是人人都会。但如果是用来分析的话,图表只是基础,还要学会使用透视图以及VBA函数。Excel的功能其实非常强大,尤其是通过学习VBA,几乎能解决所有的问题,但成本就高了,而且Excel的数据处理量并不是很大,几十万而已,大数据量还要另寻方法。
Ⅹ python和java大数据都可以做数据分析,两者有什么区别,哪个更实用
Python是一种面向对象的解释型计算机程序的设计语言, Python具有丰富和强大的库。它常被称为胶水语言,能够把其他语言制作的各种模块很轻松地结合在一起。相对于Java、C语言等,Python简单易学,更适合没有编程基础的小白入门。Python 的语言没有多少仪式化的东西,所以就算不是一个 Python 专家,你也能读懂它的代码。
Java语言是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++语言里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态的面向对象编程语言的代表,极好地实现了面向对象的理论,允许程序员以优雅的思维方式进行复杂的编程。Java语言具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等等特点 。