Ⅰ 数据分析需要掌握哪些知识
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。数据可视化数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
Ⅱ 数据分析需要掌握哪些知识
数据分析定义
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。是有组织有目的地收集数据、分析数据,使之成为信息的过程。
数据分析分类
数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。
数据分析常用方法
1、PEST分析:
是利用环境扫描分析总体环境中的政治(Political)、经济(Economic)、社会(Social)与科技(Technological)等四种因素的一种模型。这也是在作市场研究时,外部分析的一部分,能给予公司一个针对总体环境中不同因素的概述。这个策略工具也能有效的了解市场的成长或衰退、企业所处的情况、潜力与营运方向。一般用于宏观分析。
2、SWOT分析:
又称优劣分析法或道斯矩阵,是一种企业竞争态势分析方法,是市场营销的基础分析方法之一,通过评价自身的优势(Strengths)、劣势(Weaknesses)、外部竞争上的机会(Opportunities)和威胁(Threats),用以在制定发展战略前对自身进行深入全面的分析以及竞争优势的定位。而此方法是Albert Humphrey所提。
3、5W2H分析:
用五个以W开头的英语单词和两个以H开头的英语单词进行设问,发现解决问题的线索,寻找发明思路,进行设计构思,从而搞出新的发明项目具体:
(1)WHAT——是什么?目的是什么?做什么工作?
(2)WHY——为什么要做?可不可以不做?有没有替代方案?
(3)WHO——谁?由谁来做?
(4)WHEN——何时?什么时间做?什么时机最适宜?
(5)WHERE——何处?在哪里做?
(6)HOW ——怎么做?如何提高效率?如何实施?方法是什么?
(7)HOW MUCH——多少?做到什么程度?数量如何?质量水平如何?费用产出如何?
4、7C罗盘模型:
7C模型包括
(C1)企业很重要。也就是说,Competitor:竞争对手,Organization:执行市场营销或是经营管理的组织,Stakeholder:利益相关者也应该被考虑进来。
(C2)商品在拉丁语中是共同方便共同幸福的意思,是从消费者的角度考虑问题。这也和从消费者开始考虑问题的整合营销传播是一致的,能体现出与消费者相互作用进而开发出值得信赖的商品或服务的一种哲学。经过完整步骤创造出的商品可以称之为商品化。
(C3)成本不仅有价格的意思,还有生产成本、销售成本、社会成本等很多方面。
(C4)流通渠道表达商品在流动的含义。创造出一个进货商、制造商、物流和消费者共生的商业模式。作为流通渠道来说,网络销售也能算在内。
(C5)交流
(C6)消费者
N = 需求(Needs):生活必需品,像水、衣服、鞋。
W = 想法(Wants):想得到的东西,像运动饮料、旅游鞋。
S = 安全(Security):安全性,像核电、车、食品等物品的安全。
E = 教育(Ecation):对消费者进行教育,为了能够让消费者也和企业一样对商品非常了解,企业应该提供给消费者相应的知识信息。
(C7)环境
N = 国内和国际:国内的政治、法律和伦理环境及国际环境,国际关系。
W = 天气:气象、自然环境,重大灾害时经营环境会放生变化,适应自然的经营活动是必要的。像便利店或是部分超市就正在实行。
S = 社会和文化:网络时代的社会、福利及文化环境理所当然应该成为考虑因素。
E = 经济:经济环境是对经营影响最大的,以此理所当然应该成为考虑因素。7C罗盘模型是一个合作市场营销的工具。
5、海盗指标法AARRR:是互联网常用的“用户增长模型”,黑客增长模型:
Acquisition:获取用户
Activation:提高活跃度
Retention:提高留存率
Revenue:获取收入
Refer:自传播
数据分析常用工具
日常数据分析用的最多的还是办公软件尤其excel、word、ppt,数据存储处理可能用到一些数据库结合access用,另外目前一般公司小型关系数据库用mysql的还是比较多免费、轻量级,还有较多的也在用pg。
其次分析师是用一些专业的分析软件spss,sas,自助分析用的BI软件平台如:finebi、tableau等。
finebi
其实想强调的是分析师40%-60%的时间可能会花在数据的获取、处理和准备上,所以最好能会点sql,个人觉得对于分析师与其去了解数据库,不如好好去学下sql,因为sql是标准化的数据查询语言,所有的关系型数据库包括一些开源的数据库甚至各公司内部的数据平台都对它有良好的支持。最后对于第三方的一些数据收集或者一些跨平台的数据处理,包括一些分析可以用finebi。
数据分析流程
有了 这些基础的理论和分析方法后,接下来具体的分析流程可参考:
1.提出问题(需求) 2.结论/假设 3.数据准备 4.数据分析 5.报告生成 结论验证。
我们按照如上的分析步骤来个示例:
XX产品首销,哪些用户最有可能来购买?应该给哪些用户进行营销?
第一步首先是提出了问题,有了需求。
第二步分析问题,提出方案,这一步非常重要,正如上面提到的第二三类的数据分析本身就是一个假设检验的过程,如果这一步不能很好的假设,后续的检验也就无从谈起。主要需要思考下从哪些方面来分析这个问题。
可以从三个方面:(PS:这里对于一些常规的属性比如:性别、年龄、地区分布了这些基本,老大早已心中有数,就不再看了)
1.曾经购买过跟XX产品相似产品的用户,且当前使用机型是XX产品上一或几代产品,有换机意愿需求的。
2.用户的关注程度用户是否浏览了新品产品站,是否搜索过新品相关的信息,是否参加了新品的活动。
3.用户的消费能力历史消费金额、历史购机数量、本年度购机金额、本年度购机数量、最近一次购机时间及金额等。
第三步准备数据:
创建分析表,搜集数据 这一步基本是最花时间的,这时候就是考量你的数据平台、数据仓库的时候了,仓库集成的好,平台易用的话时间应该不用太长。
第四步数据分析:笔者是把数据导入到finebi进行分析的,也可以用python,其实用excel也非常好,只是笔者对excel的有些处理不是很擅长。
第五步就是图表呈现,报告的表达了,最后我们验证得到的一个结论就是:购买过同类产品,关注度越高,复购周期越近的用户越最容易再次复购。
注:想要获取33个好用数据分析工具,可以私聊回复我“工具”获得!
Ⅲ 数据分析师需要学习什么
大家都知道,现在有很多人想成为数据分析师,数据分析师需要学习很多的知识,这是毋庸置疑的,但是对数据分析师需要学习的课程不是很了解,一般来说,数据分析师需要学习很多的知识。对于数据分析师所要学习的课程来说需要分为技术学习、统计理论、表达能力三个层面进行学习,这些层面是数据分析的大体内容,在这篇文章中我们就从这三个层面进行分析,并且讲解每个层面需要学习的技能。
数据分析的技术学习涉及到了很多的工作内容。首先,我们需要对数据库或者其他渠道中获得数据。很多人对于数据获取方面还是要靠很多人,在现在对于数据的获取只能靠自己了,对于数据的获取是需要sql工具,而sql工具就是为了统计取数而生的工具,而sql工具一般是解决中型数据,Excel可以应对小型数据的分析。当然,还需要学习r语言、Python、spss等数据,这样才能够提供数据的挖掘能力。当然还需要学习数据库的内容,将数据纳入数据库的本领也需要掌握,学好了这些才能够做好数据分析。所以说,我们一定要重视起来对数据分析工具的使用。
而统计也是数据分析中最重要的工作,统计学是数据分析中至关重要的课程,不管是在业务方面发展还是在技术方面发展都需要重视数据分析工作,大家在学习统计方面知识的时候一定要学会里面的数据分析思维框架,这样才能够对日后的数据分析工作有很好的帮助。
最后我们说一下表达能力,其实不管表达能力在哪个工作中都是一个重要的技能,如果你肚子里有很多东西,但是表达不出来,也是不算是一个优秀的数据分析师,所以说,一个数据分析师一定要做到胸有成竹,这样就能够让别人轻松的理解你的想法。拥有一个好的表达能力至关重要,在分析数据以后需要给客户阐述数据分析的结果,不但有很强的语言表达能力,还要会制作ppt,在讲述和制作ppt的时候需要有严密的逻辑,这样才有说服力,在做ppt的时候还需要对语言进行组织,力争做到图文并茂,这样才能够让人信服你的数据分析结果。
关于数据分析师需要学习的内容我们就给大家介绍到这里了,如果大家想走进数据分析这一行业的时候一定提前了解好这些内容,这样有利于自己设计学习计划,从而高效的学习知识。当然,大家要想了解更多有关数据分析的相关情况,请持续关注我们吧。
Ⅳ 公司要做数据分析我要学习什么
学什么?
数据分析要学的内容大致分为6个板块,分别是:
Excel
精通Excel分析工具,掌握Excel经典函数,准确快速地完成数据清洗,利用Excel数据透视及可视化,可以透过现象看本质。
MySQL
理解MySQL数据库相关概念及存储原理,掌握SQL基本的增、删、改、查等语法掌握数据库性能调优策略,熟练使用SQL进行数据清洗与数据规范化。
BI商业智能工具
了解商业智能的核心价值,精通FineReport、FineBI,快速挖掘数据价值,掌握行业场景应用。
Python
学习Python基本编程语言知识,了解Python程序的计算机运行原理,能够使用Python编程处理工作中的重复性工作。 掌握网络数据抓取技术,Python数据库应用开发,实现Python数据可视化操作,提高数据收集和数据分析能力。 掌握Python数据分析处理基础库,具有应用Python语言解决数据分析中实际问题能力。
数据分析思维与理论
掌握微积分、线性代数、概率论、参数估计、假设检验、方差分析等数理统计基础 掌握基本的数学、统计学知识,学习数据运营方法论、机器学习夯实基础,提升数据敏感性,建立数据思维和数据素养。
掌握如何撰写行业分析报告和数据分析项目流程,能够独立完成数据分析项目。 掌握常见的数据运营方法如AARRR、漏斗、ABTset、描述性统计分析、相关分析、指数系统搭建等,培养利用多种数据分析方法解决实际工作问题能力。
机器学习
掌握机器学习常用经典算法原理及sklearn代码的实现、机器学习算法的选取、调优及模型训练、神经网络的特点及原理,增加个人核心竞争力,拥有能够用相关数据挖掘算法为解决实际问题能力;奠定人工智能算法入门基础。
如何学?
至少花三个月掌握技术
“磨刀不误砍柴工”,要想从为“工人”,甚至熟悉工,也需要很多技能,因为怎么说数据分析师也是技术工种。我觉得至少你要花3个月时间来学习一些最基础的知识。
花1个月学习数据库知识。
花1-2个月学习基础的统计学知识。
花1个月学习点linux的知识。
花1~2个月去学习最基础的数据分析软件的操作。
数据分析入门容易提高难,题主目前处于初级阶段,可以通过自学观看视频,或者系统培训来提高自己,已工作来说,接受系统培训会更加快速,更推荐跟着课程系统性的学习,搭建好逻辑框架。
Ⅳ 数据分析需要掌握些什么知识
数据分析需要掌握的知识:
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、分析思维
比如结构化思维、思维导图、或网络脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。
Ⅵ 从零开始学数据分析,什么程度可以找工作,如何计划学习方案
1. 第一阶段(一般岗位叫数据专员)
基本学会excel(VBA最好学会;会做透视表;熟练用筛选、排序、公式),做好PPT。这样很多传统公司的数据专员已经可以做了
2. 第二阶段(数据专员~数据分析师)
这一阶段要会SQL,懂业务,加上第一阶段的那些东西。大多数传统公司和互联网小运营、产品团队够用了。
3. 第三阶段(数据分析师)
统计学熟练(回归、假设检验、时间序列、简单蒙特卡罗),可视化,PPT和excel一定要溜。这些技术就够了,能应付大多数传统公司业务和互联网业务。
4. 第四阶段(分裂)
数据分析师(数据科学家)、BI等:这部分一般是精进统计学,熟悉业务,机器学习会使用(调参+选模型+优化),取数、ETL、可视化啥的都是基本姿态。
可视化工程师:这部分国内比较少,其实偏重前端,会high charts,d3.js, echarts.js。技术发展路线可以独立,不在这四阶段,可能前端转行更好。
ETL工程师:顾名思义,做ETL的。
大数据工程师:熟悉大数据技术,hadoop系二代。
数据工程师(一部分和数据挖掘工程师重合):机器学习精通级别(往往是几种,不用担心不是全部,和数据分析师侧重点不同,更需要了解组合模型,理论基础),会组合模型形成数据产品;计算机基本知识(包括linux知识、软件工程等);各类数据库(RDBMS、NoSQL(4大类))
数据挖掘:和上基本相同。
爬虫工程师:顾名思义,最好http协议、tcp/ip协议熟悉。技术发展路线可以独立,不在这四阶段
发现回答的有点文不对题额,不过大致是所有从底层数据工作者往上发展的基本路径。往数据发展的基本学习路径可以概括为以下内容:
1. EXCEL、PPT(必须精通)
数据工作者的基本姿态,话说本人技术并不是很好,但是起码会操作;要会大胆秀自己,和业务部门交流需求,展示分析结果。技术上回VBA和数据透视就到顶了。
2. 数据库类(必须学)
初级只要会RDBMS就行了,看公司用哪个,用哪个学哪个。没进公司就学MySQL吧。
NoSQL可以在之后和统计学啥的一起学。基本的NoSQL血MongoDB和Redis(缓存,严格意义上不算数据库),然后(选学)可以了解各类NoSQL,基于图的数据库Neo4j,基于Column的数据库BigTable,基于key-value的数据库redis/cassendra,基于collection的数据库MongoDB。
3. 统计学(必须学)
如果要学统计学,重要概念是会描述性统计、假设检验、贝叶斯、极大似然法、回归(特别是广义线性回归)、主成分分析。这些个用的比较多。也有学时间序列、bootstrap、非参之类的,这个看自己的意愿。
其他数学知识:线性代数常用(是很多后面的基础),微积分不常用,动力系统、傅里叶分析看自己想进的行业了。
4. 机器学习(数据分析师要求会选、用、调)
常用的是几个线性分类器、聚类、回归、随机森林、贝叶斯;不常用的也稍微了解一下;深度学习视情况学习。
5. 大数据(选学,有公司要求的话会用即可,不要求会搭环境)
hadoop基础,包括hdfs、map-rece、hive之类;后面接触spark和storm再说了。
6. 文本类(选学,有公司要求的话会用即可)
这部分不熟,基本要知道次感化、分词、情感分析啥的。
7. 工具类
语言:非大数据类R、Python最多(比较geek的也有用julia的,不差钱和某些公司要求的用SAS、Matlab);大数据可能还会用到scala和java。