A. 有哪些类型大数据库
数据库划分
小型数据库:access,foxbase
中型数据库:mysql,sql server,Informix
大型数据库:sysbase,oracle,db2
如何考虑用什么类型的数据库(小型数据库)
1. 项目的规模
a. 负载量多大,用户多大
b. 成本
c. 安全性
负载量小 100人内
比如留言板,信息系统 选用小型数据库
成本在千元以内,对安全性要求不高。
中型数据库
比如在负载,日访问量 5000—15000
成本在万元内
比如 电子商务网站
大型数据库
负载可以处理 少量数据库
Sybase < Oracle < db2
安全性能高,价格昂贵
B. 大数据是指什么如何解释
关于大数据,给出的定义是:
一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
简单理解为:
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
大数据的核心作用是数据价值化,简单说就是大数据让数据产生各种“价值”,这个数据价值化的过程就是大数据要做的主要事情。
C. 大型数据库系统分为几类
数据库一般分为三类吧:
关系型数据库:二维表的形式,是最常用的,如oracle,sql
server,db2,mysql等
层次数据库:最常见的就是windows系统注册表
网状数据库:我也不了解。
D. 大数据库和人工智能有什么关系吗
人工智能里面有一部分算法是需要数据的,首先要进去数据,然后才能学习。
比如一个大数据库叫ImageNet,有十几亿张图片,用了这么大量的图片,我们才能训练我们的深度神经网络去做图片中猫猫、狗狗、车辆的识别。
如果没有这些海量的数据,很多机器学习算法是不能用的,像我们现在看视频网站它是面向百亿特征,千亿参数,万亿样本,你没有万亿样本就支撑不了百亿特征,你可能要有一个亿的样本才有可能支撑百万特征,而且深度学习是需要海量特征做特征工程的,所以这个时候大数据实际是很多机器学习算法得以能够发展的基础,但是发展到一定程度,有些算法它又突然脱离数据了,比如说我们做增强学习,像早期的阿法狗(AlphaGo),它学了几十万专业棋手之间的对局,它是大师,那它就下得很好,后来的阿法Zero(Alpha Zero),它是自己和自己下棋,反正有规则,所以它的数据实际不是真的数据,是生成出来的,它没有用真实数据,但是它用了增强学习,所以说它最后下得比阿法狗还强。
E. 企业的大数据库都包括什么
包括:
1 员工信息
2 经营信息
3 客户信息
F. 大型数据库有哪些产品
大型数据库有Oracle、SQL Server、DB2等。
G. 大数据库,小数据库有什么区别
当然可能。小数据库是所开联赛的所有球员,和这个国家的所有知名球员,还有世界知名球员。比如我开中超一个联赛(这样比较好理解),就有中超球员和绝大部分中甲球员,还有中国的海外球员,包括一些在新加坡等较低级别联赛效力的球员。然后就只能开出世界级的,例如梅西、C罗等人,还有高潜小孩,比如奥塔门第。像越瓦诺维奇这样的球员也许就开不出来。甚至像詹姆斯或者哈特这种国家队替补都有可能开不出来。
而大数据库则包含大多数知名球员,基本你能想出来的球员,他都会有,弱点的国家,也会有很多知名的球星,也许郑大志都能开出来。
如果你小数据库开中超,大数据库开英超,英超就看不见中超大部分球员。同等条件下,不会出现大数据库的球员小数据库没有的情况,随机球员当然例外。