❶ 如何转行到数据分析师
近年来数据分析行业大火,人才紧缺,就业前景好,薪资高!职业发展广,起点好!
转行数据分析师需要的技能大致分为六个模块:
(1) Excel
零基础学数据分析师一定要从Excel入门,因为Excel是处理小型数据量企业用的最多的工具,在基础数据分析师与数据运营岗位中具有极其重要的地位。
(2) Mysql
SQL同样是零基础学习数据分析的核心内容。因为作为数据分析师,你首先要解决的问题就是你要有数据来做分析。通常企业都会有自己的数据库,数据分析师首先得根据业务需要知道自己要从企业数据库中提取哪些数据。
(3) Python
Python的基础对于数据分析师而言是非常重要的。对于十万级或者百万级数据量而言,Excel和BI都会因为运行卡顿而变得完全无法使用。然而在实际企业运用中,一次性处理十万级以及百万级数据又是非常常见的。而Python则是处理这种中量级数据的利器。
(4) BI商业智能工具
BI可以理解成Excel图表透视表的高级版。BI是将表与表相连,然后得出很多指标图。它是一个大屏的看板。有了这个看板,领导层在监控企业业务方面就有了非常直观的数据,以供他们及时做出决策调整。数据分析师需要做的是快速挖掘数据价值,将这些数据转化成有用的信息,让企业决策有数据依据,从而驱动企业决策和运营。
(5) 数理统计与数据运营
数理统计和数据运营方法论是数据分析师的理论基石。数理统计包括概率论,统计学,线性代数,以及基础的微积分理论。这些内容都不需要理解的很深,但是对它们的原理以及内涵都需要有所掌握。
数据运营方法论实际上是学习各个行业所运营的分析模型。对于想往管理路线发展的数据分析师来讲,数据运营是必须要学习的知识。其实数据运营知识也不复杂,就是根据自身业务需求将指标拆解到最细,然后运用同比和环比两种数据分析方式。
(6) 机器学习
最后一个进阶要求数据分析师掌握对大量数据分析的能力。这个阶段的数据分析是利用大量的历史数据构建出一套数学公式(也就是算法),用这个数学公式去对未来进行预测。比如说:一个人大量地刷体育短视频,根据算法可以得出这个人可能对观看足球比赛的腾讯体育会员感兴趣。这类推断和预测对于商业世界是有着极大变现意义的。
❷ 数据分析师需要具备哪些能力
1、业务能力
数据分析工作的重中之重就是业务能力,只要真正的在实践领域从事过,就会真正的明白业务知识是你分析的根本。而业务知识的学习是需要时间积累的。业务知识的培养是将远远超过技术工具的学习。数据分析其实就是基于业务之上的更深层次的思考和总结。
2、思考能力
当我们拿到一份数据报表的时候,整个数据就摆在面前,它不会主动开口告诉你。这就需要我们去推演和分析,从中找到规律,迅速评估问题的关键属性和决定因素,形成自己的独有见解,总结报告。所谓心思缜密,滴水不漏,没有思考逻辑,就没有分析思维。
3、沟通能力
数据分析贯穿企业整个工作流程链,你需要面对不同的岗位,不同的角色,这个时候,就需要你良好的沟通能力,采用不同的语言和表达方式,来获取你想要的东西。沟通能力就是数据和业务的桥梁。再沟通中,我们不要固执己见,要采取他人的意见,尤其是智者的意见,可以帮我们降低犯错率,提高分析正确率,这样我们的分析才会更有说服力。
4、技术能力
我们自己了解到的,相关技术像Excel,MySql,Python,SPSS等这些工具。我们如果刚刚步入数据分析工作,其实Excel就已经足够了。如果我们想更深层次的掌握,可以学习Python,R,SPSS等这些。他们提供的强大的挖掘功能和图形能力。尤其是R,Python引用他们的库非常方便,而已技术也很成熟。
❸ 数据分析师就业前景好吗
可以先来看几个数据,据猎聘数据显示,数据分析师的平均薪资在20k+,应届生的平均月薪都在10k+。目前数据分析能力已成为各行业必备的通用能力。研究显示,有数据分析能力的人工资比一般人多30%,而没有数据分析能力的人失业率是一般人的2倍。
数据分析师不仅在薪资上有巨大优势,这个职位在未来将会持续有巨大的缺口。据麦肯锡咨询权威预测2025年中国将需数据人才高达220万。
初级数据分析师如果选择技术方向发展,可选择的职位也有很多,例如算法工程师、大数据开发、数据科学家等等。对这些岗位的职责,可以参考下列的解释。
1、算法工程师
运用数理统计知识、编程和业务思维建立数学模型,是当之无愧的产品灵魂。
2、数据开发工程师
数据工程师属于技术岗,负责搭建数据库、处理数据、维护数据安全等工作,主要是服务于数据的使用者,比如上文中的数据分析师、数据产品经理以及数据建模师。
3、数据科学家
数据科学家属于综合性人才,集数据分析能力(>数据分析师)、统计学基础、业务能力(>数据产品)、算法(>算法工程师)与沟通能力于一身。这类人才属于数据分析行业中的顶配,各方面的能力都超一流,不过这类人才相当稀有,在行业中基本是可遇而不可求。
最后说完了数据分析师的职业发展方向,再回归到最重要的行业本质吧。选择一个行业或职位最本质的因素就是赛道。这个道理很简单,人需要在一个天花板不断上升的行业,个人职业的发展的天花板才能跟着往上走。我们都知道只有在路很宽,人不挤的赛道上才能够跑得快,也只有在一个资本都涌入的市场上才挣到更多钱。
综上所述,数据分析师的就业前景是非常好的,如果你想要成为一名优秀的数据分析师,要先找到含姿自己的方向,确立一个职业目标,再逐步掌握数据分析师的必备技能,在软件的基础操作上不断提升自己的应用。
❹ 如何快速成为数据分析师
1、技能一:理解数据库。
还以为要与文本数据打交道吗?答案是:NO!进入了这个领域,你会发现几乎一切都是用数据库来存储数据,如MySQL,Postgres,CouchDB,MongoDB,Cassandra等。理解数据库并且能熟练使用它,将是一个基础能力。
2、技能二:掌握数据整理、可视化和报表制作。
数据整理,是将原始数据转换成方便实用的格式,实用工具有DataWrangler和R。数据可视化,是创建和研究数据的视觉表现,实用工具有ggvis,D3,vega。数据报表是将数据分析和结果制作成报告。也是数据分析师的一个后续工作。这项技能是做数据分析师的主要技能。可以借助新型软件帮助自己迅速学会分析。
3、技能三:懂设计
说到能制作报表成果,就不得不说说图表的设计。在运用图表表达数据分析师的观点时,懂不懂设计直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则才能让结果一目了然。否则图表杂乱无章,数据分析内容不能良好地呈现出来,分析结果就不能有效地传达。
4、技能四:几项专业技能
统计学技能——统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。从数据采集、抽样到具体分析时的验证探索和预测都要用到统计学。
社会学技能——从社会化角度看,人有社会性,收群体心理的影响。数据分析师没有社会学基本技能,很难对市场现象做出合理解释。
另外,最好还能懂得财务管理知识和心理学概况。这些都将会使你做数据分析的过程更容易。
5、技能五:提升个人能力。
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。另外,与数据打交道,细心和耐心也是必不可少的。
数据分析入门需要掌握的技能有:
1、SQL(数据库):
怎么从数据库取数据?怎么取到自己想要的特定的数据?等这些问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能。
2、excel
分析师更多的时候是在分析数据,分析数据时需要把数据放到一个文件里,就是excel。
熟练excel常用公式,学会做数据透视表,什么数据画什么图等。
3、Python或者R的基础:
必备项,也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。
4、学习一个可视化工具
如果你想往更高层次发展,上面的东西顶多只占20%,剩下的80%则是业务理解能力,目标拆解能力,根据数据需求更多新技能的学习能力。