⑴ 大数据初学者应该怎么学
大数据大家一定都不陌生,现在这个词几乎是红遍了大江南北,不管是男女老幼几乎都听说过大数据。大数据作为一个火爆的行业,很多人都想从事这方面相关的工作,所以大家就开始加入了学习大数据的行列。
目前,市面上不仅是学习大数据的人数在增加,随之而来的是大数据培训机构数量的迅速上升。因为很多人认为这是一门难学的技术,只有经过培训才能够很好的学习到相关技术,最终完成就业的目的。其实,也并不都是这样的,学习大数据的方法有很多,只有找到适合自己的就能够达到目的。
那么,大数据初学者应该怎么学?
1、如果是零基础的初学者,对于大数据不是很了解,也没有任何基础的话,学习能力弱,自律性差的建议选择大数据培训学习更有效;
2、有一定的基础的学员,虽然对于大数据不是很了解,但有其它方面的编程开发经验,可以尝试去选择自学的方式去学习,如果后期感觉需要大数据培训的话再去报名学习;
3、就是要去了解大数据行业的相关工作都需要掌握哪些内容,然后根据了解的内容去选择需要学习的大数据课程。
大数据学习路线图:
⑵ 大数据可以做什么
从大数据的技术体系来看,大数据涉及到数据的采集、整理、存储、安全、分析、呈现和应用,这一系列操作的结果就是让数据产生价值,也就是“数据价值化”,随着未来更多的社会资源将进行数据化改造,大数据所能够起到的作用也会越来越明显。所以当前更多的企业对于大数据越来越关注,而掌握大数据技术的职场人也会有更多的发展机会。对于企业来说,利用大数据技术不仅能够全面升级自身的运营方式,也能够促进企业的管理,以及产品的创新。从这个角度来看,大数据的发展前途对于企业的发展前途有重要的影响,在当前产业结构升级的大背景下,大数据的发展前景还是非常广阔的。当然,企业要想充分利用大数据,还需要逐渐完善大数据的应用体系,包括物联网、云计算、传统信息系统等。对于职场人来说,掌握大数据技术会在一定程度上促进自身的岗位升级,而且也会打开更多新的就业渠道。目前大数据岗位比较集中在互联网领域,这与互联网行业自身的特点有关系,随着大数据技术逐渐开始落地到传统行业领域,整个传统企业会释放出大量的大数据岗位,而且这些岗位的附加值往往也比较高。
⑶ 大数据如何入门
听说你想要学大数据?你确定你搞清楚概念了吗?我们来做个小测验吧:
数据分析师在公司是干什么的?
大数据和普通数据最大的区别是什么?
你的日常工作中根本接触不到大数据,你真正想学的是大数据吗?
有点蒙圈了吧。鱼君正是要帮你在最短的时间内理清这些概念,找准自己前进的方向。
大数据之“大”数据,大家会陌生吗?不会。我们每天的日常生活都会接触到数据。淘宝购物时货比三家的价格,年终考核之后发给我们的奖金,发表在知乎上的文章的评论数量,这些都是数据。
从人们会计数开始,数据就有了,数据分析也是。那么大数据呢?
说到大数据,你就绕不开互联网。在互联网出现之前,虽然政府部门和一些公共事业单位通过日积月累获得了较大量的数据,但并没有形成足够的影响力。直到互联网产品的出现,由于它收集用户数据的便利性,通常在一天之内就能够累计其他行业可能一年才能获取的数据量。
数据量的升级造成算法和硬件都必须要升级,操作起来的技术难度也就会提高很多。这个时候,就需要专业的技术和平台来完成存储,处理和分析大数据的工作。比如说,大家都听过的Hadoop平台,MapRece算法。都是大数据时代的产物。
因此,我认为,大数据的核心,就在于大。
有一定规模的互联网公司都会成立专门的大数据部门来管理自己产品所收集到的大数据。数据量越大,处理难度就越高,相应的,可能挖掘到的内涵也会更多。于是,大数据就成了一个产业,一个火热的产业。
大数据圈子里的人在大数据行业这个圈子里,公司提供的职位大致分为三类:数据分析师,数据产品经理,数据工程师。他们紧密合作,共同驱动公司的数据决策文化。
那么,着三种职位都是做什么的?又该怎么入行呢?
数据分析师
数据分析师,是使用大数据的人。核心是掌握各种数据分析工具和数据分析技能,目标是为公司管理层和产品团队提供分析报告,帮助他们做决策。
实际工作中,数据会被处理成各种不同的类型提供给数据分析师使用,有比较原始的,有比较简单好用的。因此,数据分析师需要掌握R, SQL,Excel, Python基础编程等多种技能,以及熟练掌握常用的数据分析方法。
如果你立志于成为一个数据分析师甚至数据科学家,那么我强烈建议你进行系统的学习。
数据产品经理
数据产品经理是设计数据产品的人。核心技能是数据需求分析和数据产品的设计,和其他的互联网产品经理并没有本质的不同。实际工作中,数据产品经理需要收集不同用户的数据需求并且设计出好用的数据产品提供给大家,帮助他们“用数据做决定”。
怎么入门呢?关于具体的进阶流程,我希望你听一下我在一块听听上做的讲座《4步让你成为大数据产品经理》,会为你提供非常全面的介绍。
常见的推荐入门书籍有《人人都是产品经理》,《The DatawareHouse Toolkit》,《Lean Analytics》等等。
数据工程师
数据工程师,简单分两种,一类是数据挖掘工程师,另外一类是大数据平台工程师。工程师的基本技能当然是写代码,写高质量的代码。
数据挖掘工程师主要工作是开发大数据流水线以及和数据分析师一起完成数据挖掘项目,而数据平台工程师主要工作是维护大数据平台。
因此,理工科背景出身,掌握C, C#, Python等编程/脚本语言,熟悉各种基础算法即可以胜任。
如何用数据做决策
对于那些并不想转行进入大数据圈子的人,我们要学的究竟是什么?
我相信,在我们的日常工作中,特别是业绩不佳,找不到突破口的时候,都曾想过能否用数据来帮助自己。因为我们都曾或多或少听过一些牛逼的数据案例,比如纸尿布与啤酒之类。
举一个简单的例子,你经营的餐馆现在状况不佳。你可以自己拍脑袋想一堆的新点子来尝试改善现状。你也可以,收集整理数据,通过分析找出根本原因,并提出对应解决方案,从而扭转局面。后者听起来似乎更加靠谱一些。
那么,你该收集什么数据,做什么分析,这就是你需要学习的:“如何用数据做决策”。从这个角度讲,我认为:
人人都应该是数据分析师
学习系统的数据决策和数据分析思维,我们可以从这篇文章开始:从0到1搭建数据分析知识体系。我自己工作中常用的数据分析方法都被囊括在里面,如果趋势分析,多维分解,用户分群,漏斗分析等等。请不要小看一篇文章,知识在精不在多。
你还可以从一本简单好读的《谁说菜鸟不会数据分析》开始搭建你的数据分析思维。
关于数据分析的书籍太多了,众口难调,随便一搜就有一大堆推荐。而其中所讲的知识和理论其实都是类似的。最终要让他们发挥作用,还是要和实践结合起来。
因此,我认为,在自己的生意和工作中多实践数据分析,多思考,遇到问题多在社群中提问和大家探讨,是最好的学习办法。我自己也一直是这样践行的。
带着问题去学习,是最好的方式。
在这个过程中,随着你对数据的深入了解,掌握更多的数据分析语言和工具。从Excel到SQL,甚至到R和Python。你所能使用的数据量也会越来越大。但你大可不必一开始就扎入这些工具的学习中,那样会收效甚微。
⑷ 专业人士告诉你如何才能做好大数据分析
大数据,想必大家近几年都有所耳闻或者已经如雷贯耳了,诚然,大数据的的火爆基本上可谓在大城市人尽皆知了,但是大家可能不知道的是,大数据分析得定义或概念到底是什么。且不说新出的人工智能,就大数据而言,我们一直在强调大数据的技术,大数据技术其实是我们的畅想而已,而且人工智能也离不开大数据分析的支撑,但是大数据怎么去分析呢,如何才能做好大数据分析?一般需要对数据进行获取、打通、整合、找到规律,以及立即决策。
大数据定义是什么
很多科学家对于大数据都有一定的定义,比如麦肯锡对于大数据的定义就是“一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。”其实就是将获取的数据进行打通、整合、找寻规律、立即决策。这样,通过大数据的分析去找到自己想要的信息。
一、如何进行数据获取呢?
数据的获取一般需要找到数据源。一般来说,数据源可分类三类:
1.通过广告投放来获得数据
很多的数据都是通过广告来获得的,从广告获取数据的途径有很多,比如广告的展示量,活动页的点击率,广告的来源等方面。很多的公司企业将这些通过广告获得的数据作为第三方数据,也存在有些广告监测公司会这些此数据和人群数据进行整合,通过构建自己的数据库去给别人进行分析,这样的公司一般被称为第三方公司。
2.通过用户的行为获取数据
很多用户的行为也可以从中提取出一些数据,比如某个用户在购买的理财产品的时候,通过记录购买的时间、姓名、电话等数据,大体就能够掌握某一个群体的行为习惯,这些数据可以叫做用户行为数据。这些数据经常被搜集并且备用。从而为大数据分析提供很多不错的,有价值的数据。
3.公开数据
公开数据就是我们能够从各种渠道直接获取的数据,例如行业协会的数据,或者互联网行为数据。
二、数据的打通
数据的打通就是利用数据的重要部位的采集整合数据。一般来说,可以通过手机号将一方和三方数据整合,或者利用cookie,或者imei号等将各个方面的数据整合。不过由于现在监管制度对手机号敏感数据的控制,使得很多数据之间的打通存在很大的挑战。
三、从数据中找寻规律
从数据中找寻规律的目的就是数据清理。清理数据就能够板数据中的肮脏数据进行清除,从而净化数据环境,一般来讲,把非结构化数据变成结构化数据,这样方便统计,在数据探索中找寻规律,形成数据分析报告观点。
四、从数据分析中立即决策
将数据分析报告中的观点系统化或产品化,目前而言,大部分公司还是会依靠人工决策。
很多人有会问,为什么需要大数据分析?看上去大数据分析似乎按照这些步骤来,但是从第一步的数据源来说,其实已经反应了大数据的特点,就是杂乱无章,那么怎么从这些数据找寻规律,分析的内容和目标是否对应上,就是我们研究分析大数据的意义。对于大数据的分析主题步骤就是上述提到的数据获取、数据打通、在数据中找寻规律、最后做出决策。希望这篇文章能够帮助大家更好的了解大数据。
⑸ 互联网公司是如何做大数据的
互联网公司是如何做大数据的
大数据”炙手可热,很多企业都不会错失机会,谷歌已经从一个网页索引发展成为一个实时数据中心枢纽,可以估量任何可以测量的数据,将输入的查询与所有可用数据相匹配,确定用户查找的信息;对脸谱网来说大数据就是“人”,公司也利用这一点在十几年之内成为世界上最大的公司之一。
亚马逊通过分析用户习惯,将用户与其他可能符合用户需求的产品和建议相匹配;领英帮助求职者根据自己的技能和经验来匹配空缺职位,帮助招聘人员找到与特定资料相匹配的人才,这些都是大数据应用的典型例子,但也只是其中一部分,越来越多的数据易获得,复杂工具也会随之涌现,大数据的利用可以改变我们个人生活和商业活动。
当下,每个人都听说过人们如何利用大数据治愈癌症、终结恐怖主义和养活饥饿人口来改变世界。
当然,也很明显,有些人正利用它来赚大钱——据估计,到2030年,世界经济将增加15万亿美元。
很多人可能会想“那太好了,但实际上和我没什么关系。”只有拥有数百万美元资产的大型科技公司才会真正受益。那你需要大量的数据才能开始一项新的研究吗?
其实并不是这样的。事实上,利用近年在数据收集、分析上的巨大突破,很容易改善我们的个人和商业生活。很多人先前可能没有认识到这点。
以下是大数据作为日常生活工具和服务的一部分的一些细节。
谷歌——语义分析与用户画像
尽管谷歌并没有把自己标榜成数据公司,但实际上它的确是数据宝库和处理问题的工具。它已经从一个网页索引发展成为一个实时数据中心枢纽,几乎可以估量任何可以测量的数据(比如:天气信息、旅行延迟、股票和股份、购物……以及其他很多事情)。
大数据分析——也就是说,当我们进行搜索时大数据就会起作用,可以使用工具来对数据分类和理解。谷歌计算程序运行复杂的算法,旨在将输入的查询与所有可用数据相匹配。它将尝试确定你是否正在寻找新闻、事实、人物或统计信息,并从适当的数据库中提取数据。
对于更复杂的操作,例如翻译,谷歌会调用其他基于大数据的内置算法。谷歌的翻译服务研究了数以百万计的翻译文本或演讲稿,旨在为顾客提供最准确的解释。
经常利用大数据分析的对象从最大的企业到单人乐队,当他们通过谷歌的Adwords进行广告宣传时就是对大数据的利用。通过分析我们浏览的网页(很明显能看出我们喜欢什么网页),谷歌可以向我们展示我们可能感兴趣的产品和服务的广告。广告商使用Adwords和谷歌分析等其他服务,以吸引符合其客户资料的人员到其网站和商店时,广告商就利用了大数据分析。
脸谱网——图像识别与“人”的大数据
尽管脸谱网与谷歌在市场营销上差异巨大,但实际上它们的业务和数据模式非常相似。众所周知,两个公司都选择将自己的企业形象定位重点放在大数据方面。
对谷歌来说,大数据是在线信息、数据和事实。对脸谱网来说大数据就是“人”。脸谱网让我们与朋友和家人保持联系越来越方便,利用这个巨大的吸引力,该公司在十几年之内成为世界上最大的公司之一。这也意味着他们收集了大量的数据,同时我们也可以自己使用这些大数据。当我们搜索老朋友时,大数据就会发挥作用,将我们的搜索结果与我们最有可能联系的人进行匹配。
由脸谱网开创的先进技术包括图像识别——一种大数据技术,通过利用数百万种其他图像进行训练,能教会机器识别图片或视频中的主题或细节。在我们告诉它图片中的人是谁之前,机器可以通过标签来识别图片中的人。这也是为什么,当我们的朋友分享或给图片“点赞”时,如果它发现我们喜欢看例如婴儿或猫的图片,在我们的信息流中就会看到更多这种类型的图片。
对人们兴趣及其利益的详细了解也使脸谱网能够向任何企业出售极具针对性的广告。脸谱网可以帮助企业根据详细的人口统计数据和兴趣数据找到潜在客户,或者可以仅仅让他们通过查找与企业已有客户相似的其他客户来完成他们的大数据“魔术”。
亚马逊——基于大数据的推荐引擎
亚马逊作为世界上最大的在线商店,也是世界上最大的数据驱动型组织之一。亚马逊和本文提到的其他互联网巨头之间的差别很大程度上取决于市场营销。与谷歌和一样,亚马逊提供了广泛的在线服务,包括信息搜索、关注朋友和家人的账号以及广告,但其品牌建立在最初以购物闻名的服务上。
亚马逊将我们浏览和购买的产品与全球数百万其他客户进行比较。通过分析我们的习惯,可以将我们与其他可能符合我们需求的产品和建议相匹配。大数据技术在亚马逊的应用就是推荐引擎,而亚马逊是推荐引擎的鼻祖,其也是最复杂的。除了购物,亚马逊还让客户利用自己的平台赚钱。任何在自己的平台上建立交易的人都会受益于数据驱动的推荐,从理论上讲,这将吸引合适的客户来购买产品。
领英——被筛选过的精准大数据
如果你是一名雇主,或是正在找工作的人,领英会提供一些可以帮助你的大数据。
求职者可以根据自己的技能和经验来匹配空缺职位,甚至可以找到与公司其他员工以及其他可能竞争该职位的员工的数据。
对招聘人员来说,领英的大数据可以找到与特定资料相匹配的人才,例如现任员工或前雇员。
领英对其数据采取了“围墙的花园”方式(注:“围墙花园”是相对于“完全开放”的互联网,把用户限制在一个特定的范围内,允许用户访问指定的内容),当你选择在何处寻找和使用大数据时,这个不同之处值得考虑。领英的招聘人员和申请人的服务都是由公司内部和由服务本身控制的数据进行的,而谷歌是(在美国也提供招聘信息)从大量外部资源中获取收数据。领英的方法提供了潜在的更高质量的信息,而另一方面,它可能不全面。谷歌的方法提供了更大容量的数据,但这些数据可能是你想要的,也可能不是。
这些只是应用大数据的几种方式——远非资源丰富的公司和技术精英的工具,而是我们大部分人在日常生活中已经从中受益的东西。随着越来越多的数据变得容易获取,越来越复杂的工具涌现出来,从中获得价值,肯定会有更多的数据产生。