A. 数据分析师必读书籍
数据分析师必读书籍
有不少人留言希望我推荐数据分析的书单,无论是假日学习还是平时,都值得充电。下文是励志网整理收集的数据分析师必读书籍,供大家参考。
《谁说菜鸟不会数据分析》
知名度比较高的一套书,适合新手,优点是它和数据分析结合,而不是单纯地学习函数。学会函数适用的场景和过程比它本身更重要。
是否需要学习VBA是仁者见仁的答案。我个人不建议。Excel VBA的最大优势是适用性广,哪怕去其他行业其他职位,都离不开Excel,这时候它就是一个工作加分的亮点。但是在互联网行业,对数据分析师,VBA的性价比就不高了。
这里只推荐一本,因为我就翻过上面这本,还没全看…
数据分析师的必读书单:数据可视化
数据可视化的书不多。市面橡庆颤上多以编程为主,面向新手和设计的教程寥寥无几。差桐 如果只是了解图表,看Excel的书籍也管用。
内容很丰富,涉及可视化的方方面面,也囊括更类编程语言和设计软件:Python+JS+R+Excel。作者还有另外一本书《数据之美》。
可视化是一门侧重灵感的学科,有一种入门技巧是从他人设计中学习,从模仿开始,了解他人是如何设计的,这个网络上有大量的信息图可以参考。当然数据分析师更需要的是如何发现,别只学习展示。
英文足够好,可以看Edward Tufte的着作:《The Visual Display of Quantitative Information》、《Envisioning Information》、《Beautiful Evidence》。他是数据可视化的领军人物,他的理念是反对为艺术效果而混淆或者简化数据。暂时没有中文版。
《金字塔原理》
分析思维首推《金字塔原理》,金字塔原理有些人说它晦涩难懂,我认为是芭芭拉这个老太有骗稿费之嫌,本书包含了报告、写文、演讲等诸多内容。可以细看可以快看。另外还有一本同名案例集,有兴趣可以买。
另外麦肯锡相关的书籍还有《麦肯锡意识》《麦肯锡工具》《麦肯锡方法》等。
《深入浅出数据分析》
深入浅出系列是对新手非常友好的丛书,用生动但啰嗦的语言讲解案例。厚厚的一本书翻起来很快。本书涉及的基础概念比较广,包含一点统计学知识,学下来对数据分析思维会有一个大概了解。
《精益数据分析》
国外的精益系列一直以互联网创业作内容导向,本书也属于此类。如果是互联网行业相关,可以看看。它介绍了不同领域的指标,以及产品不同时期的侧重点。案例都是欧美,这部分做参考用。
接下来的几本,是兴趣向读物。《黑天鹅》能拓展思维,讲叙了不确定性。《思考的技术》,大前研一的着作梁败,也是咨询类经典。如果对咨询向的分析感兴趣,还可以看BCG系列,或者刷CaseBook。《批判性思维》,则是教你如何形成理性思维。
数据库有很多种,常见有Oracle,MySQL,SQL Server等。我推荐学习MySQL,这是互联网公司的主流数据库。以后学习Hadoop生态时,MySQL也是最接近Hive语法的语言。
MySQL不需要专门看书学习,因为数据分析师以查询为主,不需要考虑数据性能、数据安全和架构的问题。使用搜索引擎能解决90%的问题,我就是w3cschool学的。
《MySQL必知必会》
如果真想买书看,可以看这本,适合新手向的学习,看基础概念和查询相关的'章节即可。网络上大部分MySQL都是偏DBA的。
如果想深入,可以看《高性能MySQL》,对分析师没啥用。至于另外一个方向NoSQL,对入门者还是小众了些。
如果有余力,就学习正则表达式吧,清洗数据的工作就靠它了。
统计学是比较大的范围,分析师往后还需要学线性代数和矩阵、关系代数等。初学者不需要掌握所有公式定理的数学推导,懂得如何应用就行用。
《深入浅出统计学》
大概是最啰嗦的深入浅出系列,从卖橡皮鸭到赌博机的案例,囊括了常用的统计分析如假设检验、概率分布、描述统计、贝叶斯等。书本注重应用和趣味性,数学推理一般。
《商务与经济统计》
国外的经典教材,已经出到第十二版了。国外教材都有丰富有趣的案例,所以读起来会比国内的轻松不少。如果你还在读书,不妨买这本看一看。
名字既然有商务与经济,所以书中辅以了大量的相关案例。书内容很多,看起来不会快,适合细读。
《The Elements of Statistical Learning》
稍微有一些难度的英文书籍,属于进阶版统计学,国外很推崇。如果要往机器学习发展,这本书可以打下很好的基础。
以上书籍的难度是逐步递增的。统计学是机器学习的基础,是概率、矩阵等实际应用。现在已经有很多统计工具,Excel的分析工具库、传统行业的SPSS、SAS以及R、Python等,使用过程都不用计算推导,大学考试才会考,现在都是计算机解决,轻松不少。
不同领域的业务知识都不一样,这里以互联网举例。
《增长黑客》
增长黑客的概念就是随着这本书的畅销传播开来。增长黑客在国内即是数据分析+运营/产品的复合型人才。这本书好的地方在于拓展思路,告诉我们数据能够做什么,尤其是连AB测试都不清楚的新人。
实际涉及的业务知识不多,我推荐,是希望新人能够了解数据驱动的概念,这本算是我走上数据化运营的启蒙读物了。
《从零开始做运营》
知乎亮哥的书籍,互联网所有的数据都是和运营相关的,如果是新手,就以此学习业务知识。如果已经工作很多,就略过吧。
;B. 面板数据模型(计量分析)有哪些比较好的书籍推荐一下啊(最好是有实务操作的) 谢谢
http://bbs.pinggu.org/thread-1304707-1-1.html
王志刚编着《面板数据模型及其在经济分析中的应用》
C. 入门数据分析行业可以看哪些书
1、统计学
《赤裸裸的统计学》
理由:了解学习统计学的意义,在日常生活中统计学有什么用?也可以当成一本科普书。
《深入浅出统计学》
理由:零基础可以轻松愉快的学会,书里面有通俗易懂的案例,图文并茂,学习统计学不会那么枯燥。
《商务与经济统计》
理由:适合有基础的人看,可以深入了解统计学。零基础看这本书会有些困难。
2、SQL
《SQL基础教程》
理由:零基础入门,通俗易懂,里面的案例也很贴合实际应用。
《SQL必知必会》
理由:有基础的可以把这本书当作一本字典来使用,遇到问题了,可以查找对应的内容。
3、业务知识
电商行业:《数据化管理:洞悉零售及电子商务运营》
游戏行业:《游戏数据分析实战》
网站:《网站分析实战》
HR行业 《人力资源与大数据分析》
金融行业:《消费金融真经:个人贷款业务全流程指南》
其他行业:国外作者肖恩的《增长黑客》
关于入门数据分析行业可以看哪些书,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
D. 自学数据分析需要看哪些书的
第一大类:理论类。 理论层面的书籍,比如《大数据时代》 、《数据之巅》 。
第二大类:技术类。 技术层面的书籍,比如《Hadoop技术内幕》系列。这一类的书籍,主要是指系统技术类,在构建大数据系统时,系统如何运作,各系统组件的设计目标、框架结构、适用场景、工作原理、运作机制、实现功能等等。这类书籍,适合于IT系统部,开发部的技术人员。他们需要明白系统的运作机制,利用系统来实现大数据的应用开发,以及系统运维优化等。
第三大类:应用类。 应用层面的书籍,比如《数据挖掘技术》 、《基于SPSS的数据分析》等等。 这一类的书籍,主要是指应用技术类,告诉你如何应用工具和方法,从海量数据中提取有用的信息,来解决真实的业务问题。这类书籍,适合于业务部门、市场营销部门及与业务结合比较紧密的人员。他们更关注业务问题的解决,围绕业务问题来构建分析和解决方案。