⑴ 采集数据的方法有哪些
访问调查:调查者与被调查者通过面对面地交谈从而得到所需资料的调查方法。
邮寄调查:通过邮寄或宣传媒体等方式将调查表或调查问卷送至被调查者手中,由被调查者填写,然后将调查表寄回或投放到指定收集点的一种调查方法。
电话调查:电话调查是调查人员利用电话同受访者进行语言交流,从而获得信息的一种调查方式。
电脑辅助调查:该调查使电话调查更加便利和快捷,也使调查的质量大大提高。
座谈会:将一组被调查者集中在调查现场,让他们对调查的主题发表意见,从而获取调查资料的方法。
个别深度访问:一种一次只有一名受访者参加的特殊的定性研究。
观察法:指就调查对象的行动和意识,调查人员边观察边记录收集信息的方法。
实验法:在所设定的特殊实验场所、特殊状态下,对调查对象进行实验以取得所需资料的一种调查方法。
其中前六种方法属于询问调查,后两种方法属于观察与实验的方法。
⑵ 数据采集的五种方法是什么
一、 问卷调查
问卷的结构,指用于不同目的的访题组之间以及用于同一项研究的不同问卷之间,题目的先后顺序与分布情况。
设计问卷整体结构的步骤如下:首先,根据操作化的结果,将变量进行分类,明确自变量、因变量和控制变量,并列出清单;其次,针对每个变量,依据访问形式设计访题或访题组;再次,整体谋划访题之间的关系和结构;最后,设计问卷的辅助内容。
二、访谈调查
访谈调查,是指通过访员与受访者之间的问答互动来搜集数据的调查方式,它被用于几乎所有的调查活动中。访谈法具有一定的行为规范,从访谈的充分准备、顺利进入、有效控制到访谈结束,每一环节都有一定的技巧。
三、观察调查
观察调查是另一种搜集数据的方法,它借助观察者的眼睛等感觉器官以及其他仪器设备来搜集研究数据。观察前的准备、顺利进入观察场地、观察的过程、观察记录、顺利退出观察等均是技巧性很强的环节。
四、文献调查
第一,通过查找获得文献;第二,阅读所获得文献;第三,按照研究问题的操作化指标对文献进行标注、摘要、摘录;最后,建立文献调查的数据库。
五、痕迹调查
大数据是指与社会行为相伴生、通过设备和网络汇集在一起,数据容量在PB级别且单个计算设备无法处理的数字化、非结构化的在线数据。它完整但并非系统地记录了人类某些社会行为。
大数据研究同样是为了把握事物之间的关系模式。社会调查与研究中,对大数据的调查更多的是从大数据中选择数据,调查之前同样需要将研究假设和变量操作化。
关于数据采集的五种方法是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑶ 大数据工程师采集数据的方法有哪几类
【导语】数据的搜集是挖掘数据价值的第一步,当数据量越来越大时,可提取出来的有用数据必然也就更多,只需善用数据化处理渠道,便能够确保数据剖析结果的有效性,助力企业实现数据驱动,那么大数据工程师采集数据的方法有哪几类?
1、离线搜集:
工具:ETL;
在数据仓库的语境下,ETL基本上便是数据搜集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需求针对具体的事务场景对数据进行治理,例如进行不合法数据监测与过滤、格式转换与数据规范化、数据替换、确保数据完整性等。
2、实时搜集:
工具:Flume/Kafka;
实时搜集首要用在考虑流处理的事务场景,比方,用于记录数据源的履行的各种操作活动,比方网络监控的流量办理、金融运用的股票记账和 web
服务器记录的用户访问行为。在流处理场景,数据搜集会成为Kafka的顾客,就像一个水坝一般将上游源源不断的数据拦截住,然后依据事务场景做对应的处理(例如去重、去噪、中心核算等),之后再写入到对应的数据存储中。
3、互联网搜集:
工具:Crawler, DPI等;
Scribe是Facebook开发的数据(日志)搜集体系。又被称为网页蜘蛛,网络机器人,是一种按照一定的规矩,自动地抓取万维网信息的程序或者脚本,它支持图片、音频、视频等文件或附件的搜集。
除了网络中包含的内容之外,关于网络流量的搜集能够运用DPI或DFI等带宽办理技术进行处理。
4、其他数据搜集方法
关于企业生产经营数据上的客户数据,财务数据等保密性要求较高的数据,能够通过与数据技术服务商合作,运用特定体系接口等相关方式搜集数据。比方八度云核算的数企BDSaaS,无论是数据搜集技术、BI数据剖析,还是数据的安全性和保密性,都做得很好。
关于大数据工程师采集数据的方法,就给大家分享到这里了,想要成为大数据工程师的,对于以上的内容,就需要提前了解和学习起来,祝大家成功!
⑷ 大数据采集方法分为哪几类
1、离线搜集:
工具:ETL;
在数据仓库的语境下,ETL基本上便是数据搜集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需求针对具体的事务场景对数据进行治理,例如进行不合法数据监测与过滤、格式转换与数据规范化、数据替换、确保数据完整性等。
2、实时搜集:
工具:Flume/Kafka;
实时搜集首要用在考虑流处理的事务场景,比方,用于记录数据源的履行的各种操作活动,比方网络监控的流量办理、金融运用的股票记账和 web 服务器记录的用户访问行为。在流处理场景,数据搜集会成为Kafka的顾客,就像一个水坝一般将上游源源不断的数据拦截住,然后依据事务场景做对应的处理(例如去重、去噪、中心核算等),之后再写入到对应的数据存储中。
3、互联网搜集:
工具:Crawler, DPI等;
Scribe是Facebook开发的数据(日志)搜集体系。又被称为网页蜘蛛,网络机器人,是一种按照一定的规矩,自动地抓取万维网信息的程序或者脚本,它支持图片、音频、视频等文件或附件的搜集。
除了网络中包含的内容之外,关于网络流量的搜集能够运用DPI或DFI等带宽办理技术进行处理。
4、其他数据搜集方法
关于企业生产经营数据上的客户数据,财务数据等保密性要求较高的数据,能够通过与数据技术服务商合作,运用特定体系接口等相关方式搜集数据。比方八度云核算的数企BDSaaS,无论是数据搜集技术、BI数据剖析,还是数据的安全性和保密性,都做得很好。
关于大数据采集方法分为哪几类,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑸ 互联网采集数据有哪几种常见的方法
通过日志获取数据的,一般是服务器,工程类的,这类型数据一般是人为制定数据协议的,对接非常简单,然后通过日志数据结构化,来分析或监测一些工程类的项目通过JS跟踪代码的,就像GA,网络统计,就属于这一类,网页页尾放一段JS,用户打开浏览网页的时候,就会触发,他会把浏览器的一些信息送到服务器,基于此类数据做分析,帮助网站运营,APP优化。通过API,就像一些天气接口,国内这方面的平台有很多,聚合就是其中一个,上面有非常多的接口。此类的,一般是实时,更新型的数据,按需付费通过爬虫的,就像网络蜘蛛,或类似我们八爪鱼采集器,只要是互联网公开数据均可采集,这类型的产品有好几款,面向不同的人群,各有特色吧。而说能做到智能的,一般来说,也就只有我们这块的智能算法做得还可以一点。(利益相关)比如自动帮你识别网页上的元素,自动帮你加速等。埋点的,其实跟JS那个很像,一般是指APP上的,像神策,GROWINGIO之类的,这种的原理是嵌套一个SDK在APP里面。如果对某项采集需要了解更深再说吧,说白就是通过前端,或自动化的技术,收集数据。
⑹ 数据收集的四种常见方式
数据收集的四种常见的方式包括问卷调查、查阅资料、实地考查、试验,几种方法各有各的又是和缺点,具体分析如下。
四是实验。实验设计数据是四种方法中最耗时间的一种,因为它是通过各种各样的实验来得到一个统一的方向,也就是说,在这个过程中,可能有无数次的失败。但是实验得到的数据是最准确的,而且可能会推动某个行业的进步。所以,实验收集数据的优点是数据的准确性很高,而他的缺点就是未知性很大,不管实验的周期还是实验的结果都是不确定性的。
随着科技的发展和大数据时代的到来,收集数据越来越容易,而大家也应该更注重于保护和利用数据。
⑺ 常见的收集数据的方法有哪些
统计数据收集方法:直接观察法、采访法(又分为面访式、电话式、自填式)、通讯法、网络调查法、卫星遥感法。
1、直接观察法
调查人员到现场对调查对象进行观察、 计量和登记以取得资料的方法。调查人员对所观察的事件或行为不加以控制或干涉,能够在被调查者不察觉的情况下获得资料。
2、采访法
面访式:个别深度访谈。
一次只有一名受访者参加、针对特殊问题的调查。
适合于较隐秘的问题,如个人隐私问题;或较敏感的问题。
面试式
面访式:座谈会
也称集体访谈,将一组被调查者集中在调查现场, 让他们对调查的主题发表意见以获得资料。
参加座谈会的人数不宜过多,一般为6~10人。
电话式
调查人员根据调查提纲(调查表),通过电话问答的形式来获取信息。
时效快、成本低、覆盖面广;但每次调查时间不能过长、拒访率高。
自填式
调查人员把调查表或问卷当面交给被调查者, 填完后当面交回的一种数据收集方法。 回收率高、但耗时费力。
3、通讯法
由调查组织者(例如政府统计部门)把调查表或问卷邮寄或电子传送给被调查者,填写后返回,也称邮寄问卷调查。
调查对象不受空间区域限制、调查成本低;但速度较慢、 回收率较低。
4、网络调查法
通过互联网、计算机通信和数字交互式媒体,了解和掌握信息的方式。
具有自愿性、定向性、及时性、互动性、经济性与匿名性。
常用方法:网上问卷调查法、在线交流调查法、网络观察法、网络实验法等。
5、卫星遥感法
使用卫星高分辨率照片,提供地面农作物绿度资料,来估计农产量的方法。
⑻ 数据采集技术的方法有哪些
大数据技术在数据采集方面采用了哪些方法:
1、离线采集:
工具:ETL;
在数据仓库的语境下,ETL基本上就是数据采集的代表,包括数据的提取(Extract)、转换(Transform)和加载(Load)。在转换的过程中,需要针对具体的业务场景对数据进行治理,例如进行非法数据监测与过滤、格式转换与数据规范化、数据替换、保证数据完整性等。
2、实时采集:
工具:Flume/Kafka;
实时采集主要用在考虑流处理的业务场景,比如,用于记录数据源的执行的各种操作活动,比如网络监控的流量管理、金融应用的股票记账和 web 服务器记录的用户访问行为。在流处理场景,数据采集会成为Kafka的消费者,就像一个水坝一般将上游源源不断的数据拦截住,然后根据业务场景做对应的处理(例如去重、去噪、中间计算等),之后再写入到对应的数据存储中。这个过程类似传统的ETL,但它是流式的处理方式,而非定时的批处理Job,些工具均采用分布式架构,能满足每秒数百MB的日志数据采集和传输需求
3、互联网采集:
工具:Crawler, DPI等;
Scribe是Facebook开发的数据(日志)收集系统。又被称为网页蜘蛛,网络机器人,是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本,它支持图片、音频、视频等文件或附件的采集。
除了网络中包含的内容之外,对于网络流量的采集可以使用DPI或DFI等带宽管理技术进行处理。
4、其他数据采集方法
对于企业生产经营数据上的客户数据,财务数据等保密性要求较高的数据,可以通过与数据技术服务商合作,使用特定系统接口等相关方式采集数据。比如八度云计算的数企BDSaaS,无论是数据采集技术、BI数据分析,还是数据的安全性和保密性,都做得很好。
数据的采集是挖掘数据价值的第一步,当数据量越来越大时,可提取出来的有用数据必然也就更多。只要善用数据化处理平台,便能够保证数据分析结果的有效性,助力企业实现数据驱动~
⑼ 数据分析中数据收集的方法有哪些
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
⑽ 收集数据的方法有哪些
1、调查法调查方法一般分为普查和抽样调查两大类。
2、观察法
观察法是通过开会、深入现场、参加生产和经营、实地采样、进行现场观察并准确记录(包括测绘、录音、录相、拍照、笔录等)调研情况。主要包括两个方面:一是对人的行为的观察,二是对客观事物的观察。观察法应用很广泛,常和询问法、搜集实物结合使用,以提高所收集信息的可靠性。
3、实验方法
实验方法能通过实验过程获取其他手段难以获得的信息或结论。实验者通过主动控制实验条件,包括对参与者类型的恰当限定、对信息产生条件的恰当限定和对信息产生过程的合理设计,可以获得在真实状况下用调查法或观察法无法获得的某些重要的、能客观反映事物运动表征的有效信息,还可以在一定程度上直接观察研究某些参量之间的相互关系,有利于对事物本质的研究。
4、文献检索
文献检索就是从浩繁的文献中检索出所需的信息的过程。文献检索分为手工检索和计算机检索。
5、网络信息收集
网络信息是指通过计算机网络发布、传递和存储的各种信息。收集网络信息的最终目标是给广大用户提供网络信息资源服务,整个过程经过网络信息搜索、整合、保存和服务四个步骤