A. 数据库尖端技术有哪些
1、 【定义】 是指高技术领域中具有前瞻性、先导性和探索性的重大技术,是未来高技术更新换代和新兴产业发展的重要基础,是国家高技术创新能力的综合体现。 2、 【选择前沿技术的主要原则】 一是代表世界高技术前沿的发展方向。二是对国家未来新兴产业的形成和发展具有引领作用。三是有利于产业技术的更新换代,实现跨越发展。四是具备较好的人才队伍和研究开发基础。根据以上原则,要超前部署一批前沿技术,发挥科技引领未来发展的先导作用,提高我国高技术的研究开发能力和产业的国际竞争力。世界知识产权组织2015年11月11日发布《2015年世界知识产权报告:突破式创新与经济增长》,分析了3D打印、纳米技术和机器人工程学等拥有促进未来经济增长潜力的新技术,并指出中国是在这3项最尖端前沿技术创新方面惟一向先进工业化国家靠近的新兴市场国家。
B. 大数据技术有哪些
简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:
跨粒度计算(In-DatabaseComputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP Computing)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
C. 常用的数据库安全技术有哪些
1)用户标识和鉴别:该方法由系统提供一定的方式让用户标识自己咱勺名字或身份。每次用户要求进入系统时,由系统进行核对,通过鉴定后才提供系统的使用权。
(2)存取控制:通过用户权限定义和合法权检查确保只有合法权限的用户访问数据库,所有未被授权的人员无法存取数据。例如C2级中的自主存取控制(I)AC),Bl级中的强制存取控制(M.AC)。
(3)视图机制:为不同的用户定义视图,通过视图机制把要保密的数据对无权存取的用户隐藏起来,从而自动地对数据提供一定程度的安全保护。
(4)审计:建立审计日志,把用户对数据库的所有操作自动记录下来放人审计日志中,DBA可以利用审计跟踪的信息,重现导致数据库现有状况的一系列事件,找出非法存取数据的人、时间和内容等。
(5)数据加密:对存储和传输的数据进行加密处理,从而使得不知道解密算法的人无法获知数据的内容。
D. 大数据技术包括哪些
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
E. 数据库技术的主要目的是什么包括什么
数据库技术的主要目的是研究如何组织和存储数据,如何高效地获取和处理数据。包括:信息,数据,数据处理,数据库,数据库管理系统以及数据库系统等。
数据库技术是信息系统的一个核心技术。是一种计算机辅助管理数据的方法,它研究如何组织和存储数据,如何高效地获取和处理数据。是通过研究数据库的结构、存储、设计、管理以及应用的基本理论和实现方法,并利用这些理论来实现对数据库中的数据进行处理、分析和理解的技术。
数据库技术涉及到许多基本概念,主要包括:信息,数据,数据处理,数据库,数据库管理系统以及数据库系统等。
地位:
数据库技术是现代信息科学与技术的重要组成部分,是计算机数据处理与信息管理系统的核心。数据库技术研究和解决了计算机信息处理过程中大量数据有效地组织和存储的问题。
在数据库系统中减少数据存储冗余、实现数据共享、保障数据安全以及高效地检索数据和处理数据。数据库技术的根本目标是要解决数据的共享问题。
F. 数据库有哪些新技术
SQLServer是大众化的吧
超大型数据库orical用的比较多
小型免费mySQL最多
还有DB2等
新技术接触不多,给你个链接你看下网页链接
G. 数据库技术的应用领域有哪些
1、多媒体数据库
这类数据库主要存储与多媒体相关的数据,如声音、图像和视频等数据。多媒体数据最大的特点是数据连续,而且数据量比较大,存储需要的空间较大。
2、移动数据库
该类数据库是在移动计算机系统上发展起来的,如笔记本电脑、掌上计算机等。该数据库最大的特点是通过无线数字通信网络传输的。移动数据库可以随时随地地获取和访问数据,为一些商务应用和一些紧急情况带来了很大的便利。
3、数据库技术在多媒体技术方面的应用。
相对比传统的数据库技术,这种结合了多媒体技术的数据库,以多媒体技术的优势使得数据界面的丰富化并对于两者结合所可能带来的相关技术问题给予了充分解决,相关数据库方面的安全性得到了很好的提高。
多媒体数据库设计中有很多问题需要解决:用户接口支持方面、数据库组织与存储方面、媒体种类增加方面信息的分布影响方面。
4、信息检索系统
信息检索就是根据用户输入的信息,从数据库中查找相关的文档或信息,并把查找的信息反馈给用户。信息检索领域和数据库是同步发展的,它是一种典型的联机文档管理系统或者联机图书目录。
5、分布式信息检索
这类数据库是随着Internet的发展而产生的数据库。它一般用于因特网及远距离计算机网络系统中。特别是随着电子商务的发展,这类数据库发展更加迅猛。
许多网络用户(如个人、公司或企业等)在自己的计算机中存储信息,同时希望通过网络使用发送电子邮件、文件传输、远程登录方式和别人共享这些信息。分布式信息检索满足了这一要求。
H. 数据库给人们生活带来哪些效益带来
现在的信息系统一般都是用数据库来存储数据,利用数据库可以高效的对数据进行管理,包括数据的有效组织,查询和修改,同时可容易实现备份和恢复。
数据库的存储空间很大,可以存放百万条、千万条、上亿条数据。但是数据库并不是随意地将数据进行存放,是有一定的规则的,否则查询的效率会很低。
当今世界是一个充满着数据的互联网世界,充斥着大量的数据。即这个互联网世界就是数据世界。数据的来源有很多,比如出行记录、消费记录、浏览的网页、发送的消息等等。除了文本类型的数据,图像、音乐、声音都是数据。
发展现状
在数据库的发展历史上,数据库先后经历了层次数据库、网状数据库和关系数据库等各个阶段的发展,数据库技术在各个方面的快速的发展。
特别是关系型数据库已经成为目前数据库产品中最重要的一员,80年代以来, 几乎所有的数据库厂商新出的数据库产品都支持关系型数据库,即使一些非关系数据库产品也几乎都有支持关系数据库的接口。
这主要是传统的关系型数据库可以比较好的解决管理和存储关系型数据的问题。随着云计算的发展和大数据时代的到来,关系型数据库越来越无法满足需要,这主要是由于越来越多的半关系型和非关系型数据需要用数据库进行存储管理。
以此同时,分布式技术等新技术的出现也对数据库的技术提出了新的要求,于是越来越多的非关系型数据库就开始出现,这类数据库与传统的关系型数据库在设计和数据结构有了很大的不同。
它们更强调数据库数据的高并发读写和存储大数据,这类数据库一般被称为NoSQL(Not only SQL)数据库。 而传统的关系型数据库在一些传统领域依然保持了强大的生命力。
I. 大数据方面核心技术有哪些
简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:
大数据采集
大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。
数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。
网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。
文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。
大数据预处理
大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。
数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。
数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。
数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。
数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。
大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:
1、基于MPP架构的新型数据库集群
采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。
较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显着的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。
2、基于Hadoop的技术扩展和封装
基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。
伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。
3、大数据一体机
这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。
四、大数据分析挖掘
从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。
1、可视化分析
可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。
具有简单明了、清晰直观、易于接受的特点。
2、数据挖掘算法
数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。
数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。
3、预测性分析
预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。
帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。
4、语义引擎
语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。
5、数据质量管理
指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。
以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:
文件存储:Hadoop HDFS、Tachyon、KFS
离线计算:Hadoop MapRece、Spark
流式、实时计算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL数据库:HBase、Redis、MongoDB
资源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式协调服务:Zookeeper
集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
数据挖掘、机器学习:Mahout、Spark MLLib
数据同步:Sqoop
任务调度:Oozie