⑴ 销售数据分析指标有哪些
1、售罄率
计算公式:售罄率=(一个周期内)销售件数/进货件数
售罄率是指一定时间段某种货品的销售占总进货的比例,是根据一批进货销售多少比例才能收回销售成本和费用的一个考核指标,便于确定货品销售到何种程度可以进行折扣销售清仓处理的一个合理尺度。
2、库存周转率
计算公式:存货周转率=(一个周期内)销售货品成本/存货成本
库存天数=365天÷商品周转率
存货周转率是对流动资产周转率的补充说明,是衡量企业销售能力及存货管理水平的综合性指标。它是销售成本与平均存货的比率。
3、库销比
计算公式:库销比=(一个周期内)本期进货量/期末库存
是一个检测库存量是否合理的指标,如月库销比,年平均库销比等,计算方法:月库销比,月平均库存量/月销售额年平均库销比, 年平均库存量/年销售额,比率高说明库存量过大,销售不畅,过低则可能是生产跟不上。
4、存销比
计算公式:存销比=(一个周期内)库存/周期内日均销量
存销比是指在一个周期内,商品库存与周期内日均销量的比值,是用天数来反映商品即时库存状况的相对数。而更为精确的法则是使用日均库存和日均销售的数据来计算,从而反映当前的库存销售比例。
5、销售增长率
计算公式:销售增长率=(一周期内)销售金额或数量/(上一周期)销售金额或数量-1%
类似:环比增长率=(报告期-基期)/基期×100%
销售增长率是企业本年销售收入增长额同上年销售收入总额之比。本年销售增长额为本年销售收入减去上年销售收入的差额,它是分析企业成长状况和发展能力的基本指标。
6、销售毛利率
计算公式:销售毛利率=实现毛利额/实现销售额*100%
销售毛利率是毛利占销售净值的百分比,通常称为毛利率。销售毛利是销售净额与销售成本的差额,如果销售毛利率很低,表明企业没有足够多的毛利额,补偿期间费用后的盈利水平就不会高;也可能无法弥补期间费用,出现亏损局面。通过本指标可预测企业盈利能力。
7、老顾客贡献率
以销售额为例,计算公式=老顾客贡献的销售额/总体顾客的销售额 x 100%,分子分母也可以换成企业关心的其他指标,比如订单数、利润等。
8、品类支持率
计算公式:品类支持率=某品类销售数或金额÷全品类销售数或金额×100%
反应该品类对整体的贡献程度,越大说明对整体的贡献越大。
9、客单价
计算公式:客单价=总销售金额÷总销售客户数
是指店铺每一个顾客平均购买商品的金额,也即是平均交易金额。
10、坪效
计算公式: 平效 = 销售业绩÷店铺面积。
就是指终端卖场1平米的效率,一般是作为评估卖场实力的一个重要标准。
11、 交叉比率
计算公式: 交叉比率=毛利率×周转率
交叉比率通常以每季为计算周期,交叉比率低的优先淘汰商品。交叉比率数值愈大愈好,因它同时兼顾商品的毛利率及周转率,其数值愈大,表示毛利率高且周转又快。
⑵ 销售数据分析
1)销售排名:优秀的销售都喜欢拼第一,所以销售龙虎榜尤为重要,每天莓菌会通过实际业绩排名对前三名员工给予相应的奖励,老板也会通过排行榜了解各部门业绩情况。
2)客户排行榜:客户方面也会做成交额汇总,因为大客户是需要定期维护的。对于有些大客户,成交额下降可以提醒我们及时做好补救。
3)库存管理:对于销售而言,了解公司库存会节约很大的成本,因为一旦缺货就会影响正常的交付时间。而管理者,通过图表来了解产品销售情况,哪些产品卖的好一目了然。
BDP除了能做以上这些好看的图表,数据还可以自动更新:第一次做好分析之后,以后数据结果会自动定时更新哦(当然我连接了数据库数据、表单数据)。
这些数据都是销售最经常关注的数据,做好图表后直接通过“分享”功能将数据结果分享给Boss,数据变动,分享的结果也会变动,这样分析效率大大提高了呢,老板也特别喜欢。
⑶ 销售数据如何分析
关于销售数据分析,可以参考以下内容:
原本以为当上销售领导,可以拿着高薪与老板近距离接触,琐碎之事交给小弟,其实苦逼的生活才刚刚开始,老板经常要数据,每次都要重新做分析,恐怖!
换了一个数据分析工具,第一次做好分析之后,以后数据结果会自动定时更新哦(当然我连接了数据库数据、表单数据),整理了常见数据跟大家分享。
作为一个小领导,每天都要看下属的客户拜访情况,团队的成员会在协同软件上详细记录自己的拜访的情况,包括客户名称、行业和具体情况 。
地区分布:通过提供BDP个人版的数据地图,你能直观看到销售额的全国分布情况,还可钻取到各省的各个城市,一步一步分析问题,找到对应负责人,不断优化销售策略。
这些数据都是销售最经常关注的数据,做好图表后直接通过BDP的“分享”功能将数据结果分享给Boss,分析效率大大提高了呢,就有更多时间去管理销售业绩,优化营销策略,让业绩不断提高~~~
Ps:上面美观的数据图表均来自BDP个人版~
⑷ 做销售管理,需要分析哪些关键指标
首先还是要明确分析这些销售指标的目的。漫无目的,分析得再漂亮,对决策没有指导意义,领导也不在意。
从两个层面上来讲,一个是对销售情况的整体把控,将重要的指标呈现在一张报表中,通常看的就是销售日报或周报,用于监控数据异常以便及时发现问题。另一个是特定性问题分析,通过数据的展现触发对业务思考,来挖掘原因和解决措施。比如为了提升销售额做的产品对比分析,渠道对比分析,退货量对销售的影响等。
所以分析什么指标,不妨找销售经理深度了解其需求,特定问题特定分析。
抑或是参考下面销售数据分析体系,来寻求分析的思路。
以电商零售企业为例。主流的销售额、订单量、完成率、增长率、重点商品的销售占比、各平台销售占比。更多的也可以跟踪利润、成交率(转化率)、人均产出等。
基本业绩分析:
建设销售分析体系,以渠道组织、商品体系实时监控、统计销售业绩。
指标追踪:
根据数据间逻辑,从汇总数据的异常,从时间、品牌系列、地区纬度进行钻取识别问题。
商品价值分析:
根据商品的销量、利润等指标分析商品价值
价格带分析:
分析价格带利润、价格带销量。
可以从下面三个层面来跟踪这些指标。
3.1 指标的监控
一般都会对这些指标进行监控,有比较传统的:邮件报送(虽然数据的整合处理要花费业务人员很长时间,但也是要比没有好的);也有比较高端的:led屏幕实时监控。不管怎样的方式,也都是为了这一目的。现在很多公司已实现了指标监控的自动化,以及多平台整合与移动化监控等。
这儿举例用 FineReport 搭建的数据报表:
上面的图表是针对上一天销售指标的监控,最重要的两个指标(销售额与订单量)通过仪表盘展示出来,同时展示目标达成率,可以非常醒目的掌握最重要的信息。不达标?根据此信息就可以找到负责人进行责问了。
其他几个主要是订单分布情况,分别为各个价位的订单数量:体现客单价分布,若某一天的数据异常,比如发现客单价150的数量突然增加,则可能是店铺促销带来的效应(如果客单价下滑,但是销售额并没怎么增加,则非常明显的这次活动并不成功),也可能是某新品上线带来的冲击。总之,通过观察客单价的分布,是能够掌握很多信息的。
商品销量与平台销量的分布:主要是对销售分布的掌握,这类信息要说只通过这一天的数据来看出问题来,还是有些困难的,需要连起来看。下面会有提到。
订单时段分布:分析各个时间段的订单集中情况,例如上图中可以看出用户消费高峰期在晚上9点和10点左右。通过这些信息可以有针对性的调整销售策略。当然,如果突然某一天的订单分布有了很大的变动,也值得深入分析原因。
不止是每天的销售指标值的追踪,累计起来的数据可以产生不同的感觉,如下图所示。
一是累计销售额达成率,从图中可以看出整体的业绩表现。右边图表可以与该图形成联动,当数据异常时,可以进一步查看各月份的明细数据。
销售指标的累计值监控,是对整体销售业绩的掌控,而日报则关注与最近的数据,两者应更多的是结合起来使用,既要掌控全局,也要关注眼前。
3.2 指标的规律分布
很多事请,独立的去看,很难发现有什么异样,但是将时间维度拉开,扩大观察的视野之后,就会有很多新的发现。正如前面所说的产品销售分布与平台销售分布。
上图展示了各平台订单的占比分布情况。仔细浏览可以发现:在2月份(春节)期间,总体上天猫平台的订单占比很高;而京东平台上两个旗舰店,随着时间占比越来越高。这些信息会有助于帮助公司调整销售策略。
当数据出现异常变动,可以进一步浏览月份明细数据,可以获知店铺订单量占比的下降,是因为该店铺的业绩下滑,还是其他店铺的业绩提高,这类报表,不仅是对数据的跟踪,也是对各负责人对追踪。
3.3 指标的对比分析
比如从地区维度出发,从多个角度对比地区之间的差异,通过数据来给相关的团队以无形的压力,提醒各团队的异常情况并及时处理。
上图中,通过地图对各地区的销售情况进行直观的展示,可以选择不同的对比标准来展示。而右侧两个图表与地图形成联动,分别展示该地区的目标完成情况、同比环比情况。
通过上图中可以看出,2月份之前实际销售情况是优于计划值,而在2月份之后有些疲软,5月份的累积完成额已经落后于计划额。需要进一步分析销售情况不佳的原因。这时选择计划完成率对比指标,如果所有地区的完成率都偏低,那或许是大环境的问题,如果是大部分仅少部分地区的完成率偏低,那或许更多的是地区团队的问题。
通过这样的布局,可以对地区的销售情况进行较全面的展示,不能通过单一标准的好坏来展示团队的业绩。
比如,从商品维度出发,对比不同商品的价值贡献度,给到品牌负责人压力,以及为调整商品策略提供参考。
上图中,核心为左上角的商品利润分布图,通过该图对各商品的价值进行体现,这种图表适合商品数量较多的情况,可以很直观的显示出各商品的份量。
右侧两个折线图可与该气泡图实现联动,我们分别介绍一下:
权重曲线图:显示商品的权重分布情况,权重值=销售额/周权重系数,周权重系数在上一篇已经介绍过,是根据一周中每天的销售情况,对每天进行权重比例分配,例如周一到周日分布为:1.1,1,1.3,1.2,1.5,1.6,1.4。这样计算后得到的值应该是一个较为平缓的曲线,但是我们从图中看出,6月18日的销售额明显高于正常值,我们可以推断这一天是活动日,通过下面的图中我们可以发现6月18日的单价较低,也可以侧面证明该商品在6月18日属于活动促销期间。
同时,在6月17日的销售情况比正常值要低,很可能是因为第二天活动造成的。而月初偏低、月末偏高,则有可能是营运团队在月初有一定的懈怠,月末有追赶业绩的情况。
当然,上面的结论都是根据数据推测出的,若要对结论进行验证,还需其它方法,比如进行ab测试等。