㈠ 大数据的价值可以体现在哪些方面
在实际的升级运行中,习惯于传统经营的企业也许经常会为这样几个基础的问题感到困惑:如何提升运营现状?目标客群是谁?有哪些特点?与竞品相比竞争优势在哪?现有经营问题又是什么?而这些看似简单的问题背后却隐藏着海量数据的分析挖掘:客流数据、经营数据、以往活动相关数据、场内店铺信息、竞品数据,类此种种的深入透析才能帮助企业画像潜客、分析经营、建立会员体系、策划活动执行。无法自主革新的企业会求助一些以提供大数据服务为产品的新型公司,也就催生了这种算法公司雨后春笋般的出现,例如北京春雨、数据堂、TalkingData、中科曙光等。至于这些公司如何为传统转型服务在后面会提到。
㈡ 大数据如何贡献大价值
大数据如何贡献大价值
一切的现象都在告诉人们,一个新的科技时代似乎正在来临。有些IT职业追潮人士甚至激动地认为“人类历史上第三次科技革命”即将到来。
大数据之惑
问题在于,什么是大数据?为什么人人言必称大数据?
“很大很大的数据”就是大数据。对“大”的定义在不断刷新。10年前1GB数据已经很大了,今天,1000GB并不算太大。
问题其实不在于大,而在价值。“大数据”再大仍旧只是数据,没有足够有效的分析与应用,一切数据都是垃圾。纽约时报专栏作家David Brooks认为,缺乏足够有效的分析是大数据的最大问题:越来越多的数据,带来越来越多的相关性;其实很多相关性都是没有意义的,这种欺骗性质的数据关联会把数据管理者和使用者引入歧途,浪费大量的人力物力去管理、分析这些数据。
除了传统意义上人们认为的那些有行有列有数值或者文字的数据表单之外,IT技术还帮助人们收集了越来越多的其他类型的资料,比如视频,语音,图片,文档等。这些被称为“非结构化数据”。
结构化与非结构化数据每天都在成倍的增加。以道路视频监控为例,全上海的摄像头有10多万个,每一刻都在记录图片与视频。一旦发生案件或者事件,这些记录在硬盘库里的资料就成为侦察与审判环节的重要证据。尽管目前技术尚不支持,业界仍然期望未来能在TB乃至于PB级的视频数据里搜到一张特定身影或者脸孔。这类搜索/分析技术未来将是启动视频类大数据应用的引擎。
同样,基于语音、照片或者文本的分析与数据挖掘同样可以给人类对数据的理解带来革命性的突破。问题在于,这类技术仍停留在实验室阶段。
尽管没有足够的应用,大数据仍然不可阻挡地火热了起来。不扯上大数据似乎就要落伍了一样,大数据满天飞的日子来到了。至于这股潮流到底会演变成象。com一样的泡沫,还是第三次产业革命,在华威先生们眼里,已经根本不重要了。业界,数据库/存储等领域供应商当然乐见其成,而企业的IT经理们则又多了一个申请预算的借口。
数据的价值及企业数据战略
数据的获取与存储仍然是IT建设的基础架构。一旦决定启动“大数据战略”,对资源源源不断的占用使得这一工作黑洞化。如何规避这种大数据黑洞?结合全球主要行业领导企业以及部分小而强的欧洲企业的成功案例,我认为,应该以应用(分析及业务决策)为中心建立相应的数据战略,并且随之建立相应的从收集数据、管理数据到最终业务决策的一整套流程。而不是为数据而数据——首先要建立以应用为中心的数据战略。说到应用,银行、保险、汽车、化工等几乎所有行业都在开展以数据分析为基础的各种应用,以JMP软件全球行业案例库里面的部分典型客户为例:
电商在分析顾客采购行为数据,以进行促销和相关货品推荐(交叉/提升销售)
航空公司在调查旅客反馈,以改进空中服务(客户挽留)
药厂在对临床实验数据进行分析,以判断新药的安全性和有效性(研发新产品)
汽车厂商在对维修信息进行分析,以改进汽车整车和关键零部件的可靠性以提升客户满意度(挽留及获取客户)、降低客户拥有成本和车厂的保修成本(降低成本)
手机公司在对手机销售量进行预测,以合理排产与优化库存(运营优化)
卫生管理部门在运用数据模型对流行病趋势进行描述、监控与预测
银行在对客户服务流程进行优化与改善,以提升客户满意度
电脑厂商在利用客户对不同配置组合进行市场调查,以进行定价
保险公司在根据保单出险情况进行保单定价的动态调整,以确保该产品基本盈利能力
半导体企业在对制造全流程数据进行分析/建模/优化,以改善工艺,提升良率,从而实现成本降低与利润提升
食品公司在利用数据分析和市场调查手段,研发本地客户最喜好的口味
快速食品行业在利用JMP地图分析工具与人口统计学相结合,以进行门店选址,客户获取及供应链优化
只有足够有效的应用,方可获取数据的价值。企业只有在战略层面确立了数据分析的重要性,方可持续改善。以GE为例,六西格玛及相应的数据分析流程已经成为GE的全球战略与文化。不仅如何,GE还持续不懈地推动基于数据分析的持续改善工作。在高端航空发动机研发及GE能源系统业务领域方面,GE也与时俱进,导入JMP所代表的业界最高水平的实验设计(DOE)方法,以进一步提升其研发水平。
其次,一切都离不开人。与这股指数级增长的数据分析需求相对应,统计、分析类人才正成为职场上的稀缺品种和抢手货。3月初华尔街日报刊登了“全美最抢手职业排名”,数据分析类职位高居榜单第二位。这是美国。对中国来说,或许排名更高,因为稀缺。
最后,建立一整套以数据分析及决策流程,以取代传统的拍脑袋决策体系。这一点对于中国企业来说尤其需要强调。这不仅仅是对战略的有效执行,更需要企业拿出“改变”的决心和勇气,在制度层面体现出对“改变”的鼓励和包容。
在这个应用为王的年代,对于企业来说,不论是搭建基础架构还是应用软件,要不要投入,如何投入,其实是个老话题了,无外乎价值与价格。大数据/云计算,不论名字如何变化,逻辑依旧。
㈢ 如何正确认识大数据的价值和效益
1、数据使用必须承担保护的责任与义务
我国数据流通与数据交易主要存在以下问题:数据源活性不够,数据中介机构还处于起步阶段;多源数据的汇集技术尤其是非结构化数据分析技术滞后;缺乏熟悉不同行业并掌握在特定领域使用数据技术的人才。
数据的价值在于融合与挖掘,数据流通、交易有利于促进数据的融合和挖掘,搞活数据从而产生效益。数据共享开放、流通交易和数据保护及数据安全对数据技术提出严峻挑战,对法律的制定及执行提出了很高要求。为此,数据使用必须承担保护的责任与义务。
㈣ 如何用大数据分析创造商业价值
法则15--大数据价值不在大,而在于挖掘能力
维克托·迈尔-舍恩伯格在《大数据时代》一书中举了百般例证,都是为了说明一个道理:在大数据时代已经到来的时候,要用大数据思维去发掘大数据的潜在价值。
什么是大数据思维?维克托·迈尔-舍恩伯格认为:1)需要全部数据样本而不是抽样;2)关注效率而不是精确度;3)关注相关性而不是因果关系。
我们认为,大数据并不在"大",而在于"有用"。大数据思维首先就是要能够充分理解数据的价值,并且知道如何利用大数据为企业经营决策提供依据,即通过数据处理创造商业价值。
大数据思维核心是理解数据的价值,通过数据处理创造商业价值
《哈佛商业周刊》指出:数据科学家是21世纪最性感的职业。在获取海量数据后,就要考虑如何去利用数据。数据科学家就是采用科学方法、运用数据挖掘工具寻找新的数据洞察的工程师。大数据时代正是凸显了数据科学家的重要性以及将数据分析和业务结合的必要性。当具备硬件和基础设施时以产生海量的数据时,需要有人将大量散乱的数据变成结构化的可供分析的数据,进行整合、清理来形成结果数据集。
人才雷达就是一个典型例子。基于每个人在网络上留下的包含着其生活轨迹、社交言行等个人信息的网络数据,依靠对这些数据的分析,从个人的网上行为中剥离出他的兴趣图谱、性格画像、能力评估,基于数据挖掘的人才推荐平台人才雷达(Talent Radar)帮助企业更高效的实现人岗匹配,提供猎头服务。为了评估一个技术人员的专业技能,人才雷达利会利用其在专业论坛(如Github、CSDN、知乎、丁香园等)上的发帖数、内容被引用数、引用人的影响力等数据,通过这些信息建模,完成其专业影响力的判断。同时,微博的数据也被充分利用起来。其中折射出的社交关系也是判断一个人职业能力的因素之一。所以,判别用户在社交网络上其好友的专业影响力也是人才雷达推荐系统中的一个重点。同时,即使被推荐者的个人能力难以符合职业需求,但如果他有着能力不错的好友关系,则也可以作为合适的"推荐人"将任务传播到下一层级当中。不同用户在社交网络上的行为习惯也是不同的,例如发微博的时间规律,在专业论坛上的时间长短,这些行为模式可以用来判别其工作时间规律,看其是否符合对应的职位需求。通过各种数据源的融合和分析,人才雷达不仅能够在节省成本的前提下帮助企业提高人才招聘的效率。与传统的猎头业务相比,其采用群体智慧的方式能够更广泛和客观的筛选人才,并且由于其被动测量的方式也能在一定程度上避免直接面试时部分求职者的虚假表现。它现在的客户有淘宝、微软、网络等知名企业。
亚马逊于2013年12月获得"预期递送(anticipatory shipping)"新专利,使该公司甚至能在客户点击"购买"之前就开始递送商品。该技术可以减少交货时间和减少消费者光顾实体店的次数。在专利文件中,亚马逊表示订购和收货之间的时间延迟"可能会削弱顾客从电商购买物品的热情。"亚马逊指出,它会根据早前的订单和其他因素,预测某一特定区域的客户可能购买但还未订购的商品,并对这些产品进行包装和寄送。根据该专利,这些预递送的商品在客户下单之前,存放在快递公司的寄送中心或卡车上。在预测"预期递送"的商品时,亚马逊可能会考虑顾客过往的订单、产品搜索、愿望清单、购物车的内容、退货、甚至顾客的鼠标游标停留在某件商品的时长。这项专利表明,亚马逊希望能充分利用它所拥有的海量客户信息,借此形成竞争优势。
大数据最本质的应用就在于预测,即从海量数据中分析出一定的特征,进而预测未来可能会发生什么。当不同的数据流被整合到大型数据库中后,预测的广度和精度都会大规模的提高。
㈤ 大数据如何体现其价值
第一、帮助企业寻找更多的市场机会
基于用户分析的基础上,企业可以获得更好的产品和营销的创意和概念,怎么去搜集到更多的用户信息,挖掘可能有的市场机会,这是大数据帮助企业实现的最好方法。
第二、帮助企业提高决策的科学合理性
从大数据诞生的时候来讲,它都是站在企业的决策角度出发,从数据的数量到数据的本质,数据越多,管理者进行决策的时候所依据的信息完整性就会越高。
第三、帮助企业找到人员管理新模式
企业的员工是无条件的服从上级的管理,还是内部一盘散沙,企业的管理效率高不高,在竞争环境日益激烈的今天,对于企业来说,管理高不高效直接关系到企业的经营效益高不高效,大数据与企业的核心管理因素相结合,成为企业的资产之一,大数据的成果可以进行企业内部共享,对于企业来说,这是一个变革的机会。
第四、帮助企业提供更加个性化的服务
弹性管理,个性化领导,每一个员工都可以得到更加个性化的培训,每一个用户都可以得到更加个性化的服务,对于企业来说这种个性化的创新无疑要依靠大数据技术的支持和发展。
㈥ 如何利用大数据来创造价值
深圳远标为你解答
大数据如何创造价值
这里列举5个大数据广泛适用,能创造质变性的价值并影响机构的设计、组织和管理的方面。
首先,大数据能提高透明度。仅仅让相关的利益共享者尽可能简单及时地使用大数据就可以创造极大的价值。例如在公共行业,让原本孤立的部门间轻易地共享数据,就能明显减少搜索和处理时间。在制造业中,整合研发、工程和生产单位数据以实现并行工程,就能显着缩短上实时间并提高质量。
其次,让发现需求、寻求变化和提高性能的实验成为可能。当组织机构创建和储存更多数字形式的业务数据时,他们可以收集更多准确和细节的性能参数(实时或近乎实时),从产品库存到人员病假等任何事物。
再次能针对细分人口采取定制行动。大数据允许组织机构高度细分市场,专门定制产品和提供精准服务来满足各种需求。这种方式在市场营销和风险管理领域众所周知,但在其他行业可能是革命性的——比如在形成一种同等对待所有群众的道德观的公共行业。然而即使是已经使用市场细分多年的消费品和服务公司,也开始部署复杂的大数据技术来瞄准促销和广告推广。
还能用自动化算法取代或支持人类决策。复杂而巧妙的分析可以大幅度改善决策、降低风险和发觉有价值的观点。对组织来说,像这样的分析应用,从税务机构能够使用自动化风险引擎标记需进一步检查的候选人,跨越到零售商可以利用算法优化类似于自动库存微调和专柜店与在线销售实时价格响应的决策过程。在某些情况下,决策不一定是自动的,但通过使用大数据技术和科技,而非小样本的个人处理和理解电子表格来分析海量、完整的数据会增强决策。决策也许会变得不同,但一些组织已经着手通过分析来自顾客、员工,甚至嵌入在产品内的传感器中的完整数据来决策。
最后,大数据有助于革新商业模式、产品和服务。大数据能够让公司创造新产品和服务,强化现存功能,并创建全新的商业模式。制造业正在运用来自实际产品使用的数据,来改善下一代产品的发展并建立创新型售后服务。从导航到基于人们驾驶汽车的位置和方式的财险定价,实时定位数据的出现已经创造了一个基于定位服务的全新篇章。
㈦ 如何使用大数据技术为企业创造更大的价值
大家好,我是Lake,专注大数据技术、互联网科技见解、程序员经验分享
作为一名大数据工程师,我来说下我的想法。如何使用大数据技术为企业创造更大的价值?这里有两个注重点,一个是大数据技术,一个是为企业创造价值。目前大数据在不同的应用场景,可以分为很多不同种类的技术,比如数据的离线计算有 Hadoop、Spark,存储方面有HBASE、HDFS、MongoDB、JanusGraph,消息中间件有 Kafka、MetaQ,实时计算有Storm、Flink、Spark Streaming等等。这么多大数据技术,怎么样为企业创造出更大的价值呢,我认为有一下几点:
保证线上业务稳定性
目前很多企业最底层都用到大数据相关技术,如何保证线上业务稳定成为大数据技术最重要的一件事情。线上业务不稳定会直接影响到消费者的使用,尤其是涉及到交易相关的业务更是重中之重。线上业务的稳定性不能受到大数据集群抖动而产生影响,打个比方,线上订单交易链路在最底层使用到了HBase 数据库,但HBase集群突然 Down掉之后,那么线上用户突然不能够进行下单和支付了,这对于公司来说,直接就影响到公司的交易额和利润,这种情况是公司绝对无法容忍的。
所以你能够保证公司所使用大数据技术集群资源越稳定,那么对于线上业务的稳定运行就越有保证,通过对大数据集群稳定性进行保障,进一步提升消费者的使用体感,这就是你的价值。
更好的降低大数据集群机器资源消耗
更好的降低公司大数据集群机器的资源消耗,提升公司集群资源的使用率,进一步压榨机器的性能也为公司带来了价值。公司每台机器,说实话,都需要从外进行采购,这消耗的就是公司的资金。如果你能在现有的机器上,满足更多的业务,而不只是单纯的购买机器水平扩展来满足业务,这样会进一步帮助公司节约资金。公司的最终目的也是为了盈利,你帮公司降低了机器的购买,这也是为公司节约了一笔很大的成本。
大数据技术创新
大数据技术发展到了一定程度,就需要自己通过技术创新,来满足公司一些更为复杂的业务场景。通过技术创新,带动业务发展。比如图数据库的出现,使得公司能够使用图数据库来构建用户的社交网络图,通过构建的社交网络图可以快速了解到用户的关注、用户的粉丝、和用户兴趣相同的用户有哪些。哪些用户是信息传播关键点等等,通过大数据技术的创新,知道更多潜藏在大数据底层的商业信息价值,从而帮助公司上层更好的做战略规划。同时,也可以通过技术创新,变革整个公司的技术架构,使用新的技术来满足未来公司战略的发展,最直接的例子,就是阿里云。
总结 总体来说,大数据如何为公司创造更大的价值,我认为可以从提升大数据集群的稳定性入手,更好的保证公司线上业务的稳定和运行。其次,可以更好的压榨和节约公司的大数据集群相关的机器资源,从而减少公司机器方面的采购成本。最后,就是通过大数据技术创新,通过技术来驱动业务的发展,当然这也是最难的一点,如果你能做到通过某种大数据技术的创新使得公司战略方面业务的成功,那么你的价值对于公司来说,将是无法估量的。