导航:首页 > 数据处理 > 端到端数据链是什么意思

端到端数据链是什么意思

发布时间:2023-11-17 19:47:24

① 数据链 什么意思

数据链
在谈到海军通信系统时,经常会碰到链路(Link)和线路(Circuit)这两种术语,不少人使用起来并不十分严格。但是,西方海军使用起来是有严格定义的:
链路:表示一套完整的设施,包括完成通信所使用的设备、训练及程序,如卫星通信链路、11号数据链、16号数据链等,链路是一种固定能力。

线路:表示建立电文传输的一种通信途径,如电传线路,高频话音线路等。一个通信线路就是一种临时的通信途径。

数据链首先用于海军战术数据系统(NTDS),它是第一代舰载或机载自动化通信系统,1961年研制成功。当时通过使作战情报中心(CIC)计算机化来解决空战难题。目前,美国现役舰船约200艘装备NTDS系统,其中包括航空母舰、巡洋舰、驱逐舰、护卫舰和两栖攻击舰。海军战术数据系统使用11号链、4号链和14号链。此外,在北约和美国海军中还使用4A号链、16号链等。11号链是一条用于交换战术数据的数据链。例如,交换发现敌情报告,还可用于协调作战区域内各个平台。11号链使用战术数据信息数据链A的数据格式,美国军用标准MIL-STD-188-203-1说明了11号链的详细情况。11号链通常用来联通参加作战的战术部队,如海上舰艇、飞机和岸上节点。主要采用高频传播,在视距范围内它可使用特高频频段实现各种作战平台的互连。只有那些能处理并显示作战态势及目标信息的平台才装有11号链设备。

11号链支持战斗群各分队之间海军战术数据系统的数据传输,它采用高频无线电设备时,数据传输速率为2275比特/秒。海军战术数据系统是一个支持各级战斗指挥人员的海军舰载战术指挥控制系统。11号链采用轮询技术(也叫点名呼叫),为各部队之间提供通信并交换数据信息。

美国海军目前使用的数据终端机有AN/USC-35(V)、AN/USQ-76(V)、AN/USQ-83和AN/USQ-111(V)等。后两种型号设备是90年代初才装备部队的,其功能齐全,适用于北约各国海军装备。

16号链支持战斗群各分队之间的综合通信、导航和敌我识别,用于联合战术信息分配系统。16号链使用战术数字信息数据链J型作为数据格式。战术数据信息数据链J一般用于把参战的部队互连起来。例如,把海上部队、飞机和岸节点互连起来。它用于交换联合战术数据,使用具有抗干扰能力的特高频无线电设备。

目前使用的数据终端有三种类型:一类用于大型飞机、水面舰艇和接入陆地主网的网关设施;二类用于作战飞机和小型舰;三类用于地面移动部队和小型无人驾驶飞机。

4A号链是一种半双工或全双工飞机控制链路,供所有航空母舰上的舰载飞机使用。开始引入4A号链时是为了支持自动着陆系统,后来发展成为通过交换状态和目标数据来协调E-2C"鹰眼"预警飞机和F-14A"雄猫"战斗机的手段。4A号链也用于校正航空母舰上的飞机惯性导航系统。

4A号链使用特高频,在整个频率范围内,射频信道间隔25千赫兹。为了连接各种装置和交换目标信息,4A号链采用了单频时分多址技术。用于作战飞机控制和目标信息的数据率为5千比特/秒。

典型的4A号数据链终端由特高频无线电台、调制解调器、密码设备、数据处理器和用户接口设备组成。在4A号链路中有两种类型的终端:控制站终端和飞机终端,它们以半双工方式工作。但是,控制端终端还必须能够工作在全双工方式。半双工信道则完成对联机性能的监视功能。

HAVEQUICK最初是美国空军发展高级战术通信计划的一项内容,目前国内还没有统一的译名。该计划是打算在更先进的通信技术出现之前,快速开发和采取有效的措施来保护重要的特高频通信不受敌方的干扰。整个计划80年代初执行。HAVEQUICKⅡ是该计划的一部分。它是一种特高频战术无线电设备,用于舰艇与各种节点(如其他舰艇、飞机和岸上部队)之间战术数字数据的交换。它为现用的高频无线电设备提供了电子反对抗功能,如AN/ARC-182和AN/WSC-3就具有了这种功能。

公用宽频带数据链是一条图像数据通信数据链,用于从空中平台到舰艇的图像数据传输,如从侦察机到舰艇的图像数据传输。它提供了由空中侦察机获取传感器信号的航空母舰和装备有其它数据链的飞机之间的自动化通信。公用宽频带数据链的工作频段是X频段和Ku频段。公用宽频带数据链的对舰船链路传输速率为10.71兆比特/秒~274兆比特/秒,而舰船到飞机链路传送速率为200千比特/秒。该链路的舰用终端是AN/USQ-123,它支持由飞机到舰船的图像数据通信。该系统在飞机和舰船之间有两条通信线路,分别使用X波段和Ku波段的频率。该系统早期称之为模块化内部联络数据链,以航空母舰为节点,接收来自侦察机和其他飞机的传感器信息,其中包括光电、红外、合成孔径雷达和信号情报。而上行链路要对机载终端发送控制信息,其舰载终端由天线和射频分系统、多链路处理器分系统、图像处理分系统及其他舰载系统组成。

轻型机载多用途系统(LAMPS)数据链是舰船和LAMPS直升机之间的战术数据链路。LAMPS直升机下行链路无线电台把机上传感器系统的雷达和声纳所获得的数据传送到直升机母舰上。

LAMPS数据链舰载终端是AN/SRQ-4,其组成包括装有天线罩的AS-3274定向天线,AS-3275全向天线,C-10425天线控制/监视器,OR-209收发信机和KG-45密码设备等。

LAMPS数据链的上行链路和下行链路工作在G波段,它是一个全双工链路,其数据速率为25兆比特/秒。

1号链是一条使用陆上通信线路的数据链。它用于防空数据的自动交换。为了在两条数据链之间交换防空信息,1号链借助使用数据缓冲装置,自动地把数据重新格式化,其传送速率为2.4千比特/秒。14号链是一条在高频和特高频这两种频率上工作的数据系统。它通过安装有11号链路的指定舰船以及其他的平台提供计算机控制的战术数据广播。14号链发送标准的每分钟100字电传,这样使由战术数据交换支持的区域防御和攻击任务的、没有装备NTDS的舰船的战术数据处理设备的成本降至最低。

计算机和远程通信技术的结合是信息技术的核心,近几年有了巨大的发展。美国海军正在执行其“哥白尼体系结构”计划,全面地改革其指挥控制系统,其中战术数据信息交换系统主要用于数据信息传输和交换。数字数据网络将成为未来海军通信的主要方式。
(摘自中国工程技术河北信息网)

② 战斗机数据链是什么意思

数据链技术作为当今军用信息技术的核心,从其登上军事舞台伊始,就引起了各国的高度关注。那么日新月异的数据链技术又是从那里起步与发展的呢?
20世纪50年代:战术协同需求催生数据链

在当今世界各国军队中,美国海军最
早启动数据链建设。美国海军由水面舰艇、水下潜艇、航空兵、陆战队等多兵种组成,其作战特点为海域辽阔、平台众多、兵力分散、组织复杂。每个作战平台都是相对封闭、独立的作战个体,无线通信是各作战平台对外联系的惟一手段。因此,相对于其他各军兵种,美国海军对战术协同的需求尤其迫切。

20世纪50年代,美国海军为解决舰(主要是航母)机协同问题,提出在各类舰载作战飞机与水面舰艇之间建立数据链接关系,以实现舰艇对舰载作战飞机的指挥引导,于是研制出了第一台数据链设备:LINK4。早期的LINK4功能有限、技术简单,只是单向传输信息,作战飞机只能接收信息。

数据链最早用于解决舰机协同问题,并不是偶然的,因为“平台移动速度越快,战术协同的需求越迫切”,并且,战术协同的反应时间必须远远大于作战平台相互作用的反应时间。需要指出的是,导弹既是一种武器,也是一种特殊的作战平台。导弹的出现,特别是其攻击距离的大幅度延伸,使战术协同的需求在战场的每一个角落、对攻防双方都变得迫切起来,而且对战术协同反应时间的要求极高。运动速度极快的作战平台的出现,是数据链应运而生、并快速发展的主要原因。

20世纪70年代:实现点与点双向互联

继LINK4之后,美国于上世纪60年代又开发出了LINK11数据链。LINK11可以利用各种现役的HF和UHF电台,使用轮询协议组网,数据速率一般不高于2500bps。LINK11B采用与LINK11相同的信息编码标准,可用于多种信道,建立点对点链接。LINK11主要用于舰船之间、舰船与飞机之间、舰队与岸上指挥机构之间的情报交换。美军EP-3系列的预警飞机就配装了该数据链的终端设备。LINK11B的信息传输标准与物理信道无关,可以在任何点对点数据链路上传输,包括通过调制解调器在模拟话音信道和数据信道上传输。

在LINK4的基础上,美军从70年代末期开始发展了LINK4A/C两套系统,采用半双工方式实现了双向通信,并于1983年形成TADILC传输技术标准。LINK4A数据链工作在UHF频段,采用FSK调制方式,使用命令/响应协议以及时分多路传输(TDM)技术,数据速率为600~5000bps,基本上无保密和抗干扰能力,主要用于海军对舰载飞机的指挥引导。LINK4C从80年代开始装备,采用与LINK4A大体相同的技术体制,增加了抗干扰措施。LINK4A/C是用于引导和被引导飞机之间传送指挥引导命令和目标数据,在超短波信道传输串行时分多路信号。一旦发现敌目标,飞机上的计算机能够自动跟踪和推算目标未来的位置,为准备拦击的飞机发送信息,把飞机引导到截击点或目标,同时被引导的飞机能通过引导信息触发一种特别的应答信息,做出应答。

20世纪90年代:具备跳扩频与抗干扰能力

LINK16(北约国家称为16号链)是由美国普莱西和柯林斯公司研制的JTIDS(三军联合战术信息分发系统)来实现的,20世纪90年代初才正式装载平台。它是一种双向、高速、保密、抗干扰数据链,用于美三军及北约各国军队,传输监视和武器控制等八大类信息。16号链大大地扩展了11号链和4A/C号链的信息流量,工作在960~1215MHz频段,传输速率为28.8kbPs~238kbPs,采用TD鄄MA方式组网,具有跳扩频相结合的抗干扰方式,跳频速率为76900次/秒;具有话音/数据加密传输、抗干扰、组网灵活和无中心节点等特点,能同时支持大约30个网络工作,网内成员多达上百个甚至更多,在采用大功率对流层散射信道的条件下能够覆盖480×960km2的区域。每个成员利用一个或多个所分配的时隙依次发送信息,并可通过中继实现超视距数据传输。目前北约国家为了实现各种作战飞机之间的信息传输,共同提出了多功能信息分发系统(MIDS)开发计划,主要开发类似于LINK16信息标准的小型化端机,用于装备作战飞机和地面部队。

未来:保密传输与抗干扰性能更优

LINK22是北约组织共同开发的下一代数据链系统,也称为北约组织改进型11号链(NILE)。LINK22有两大设计目标,一是取代LINK11;二是在信息格式上与LINK16兼容。因此,LINK22采用了由LINK16衍生出来的信息标准,以及LINK16的结构和协议。同时,LINK22在其HF和UHF工作频段上采用跳频工作方式来提高抗干扰能力,其通信距离为300英里,主要用于海军舰艇的数据传输。LINK22是一个保密、抗干扰的战术数据通信系统,采用TDMA或动态TDMA组网控制,最大可以支持不同的传输媒介的40个网络同时运行,支持F系列和F/J系列报文的传输与转换。在数据传输方面,LINK22同时支持JTIDS和单音LINK11的数据传输方式,在UHF波段采用JTIDS体制,传输速率为12.6kbPs,在HF波段采用单音LINK11的传输体制,传输速率为500至2600kbPs。

除了上述几种数据链外,法国军方研制的W链、意大利研制的“ES”链等,其基本性能和功能都与LINK11相同,主要工作方式为点名询问,仅在传输帧格式上有所不同。以色列自行开发了ACR-740数据链,该型数据链还增加了一种CSMA方式。另外,俄罗斯也在各个时期发展了自己的数据链系统和装备。

③ 计算机网络(三)数据链路层

结点:主机、路由器

链路:网络中两个结点之间的物理通道,链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路。

数据链路:网络中两个结点之间的逻辑通道,把实现控制数据传输协议的硬件和软件加到链路上就构成数据链路。

帧:链路层的协议数据单元,封装网络层数据报。

数据链路层负责通过一条链路从一个结点向另一个物理链路直接相连的相邻结点传送数据报。

数据链路层在物理层提供服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。其主要作用是加强物理层传输原始比特流的功能,将物理层提供的可能出错的物理连接改造成为 逻辑上无差错的数据链路 ,使之对网络层表现为一条无差错的链路。

封装成帧就是在一段数据的前后部分添加首部和尾部,这样就构成了一个帧。接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束。首部和尾部包含许多的控制信息,他们的一个重要作用:帧定界(确定帧的界限)。

帧同步:接收方应当能从接收到的二进制比特流中区分出帧的起始和终止。

组帧的四种方法:

透明传输是指不管所传数据是什么样的比特组合,都应当能够在链路上传送。因此,链路层就“看不见”有什么妨碍数据传输的东西。

当所传数据中的比特组合恰巧与某一个控制信息完全一样时,就必须采取适当的措施,使收方不会将这样的数据误认为是某种控制信息。这样才能保证数据链路层的传输是透明的。

概括来说,传输中的差错都是由于噪声引起的。

数据链路层编码和物理层的数据编码与调制不同。物理层编码针对的是单个比特,解决传输过程中比特的同步等问题,如曼彻斯特编码。而数据链路层的编码针对的是一组比特,它通过冗余码的技术实现一组二进制比特串在传输过程是否出现了差错。

较高的发送速度和较低的接收能力的不匹配,会造成传输出错,因此流量控制也是数据链路层的一项重要工作。数据链路层的流量控制是点对点的,而传输层的流量控制是端到端的。

滑动窗口有以下重要特性:

若采用n个比特对帧编号,那么发送窗口的尺寸W T 应满足: 。因为发送窗口尺寸过大,就会使得接收方无法区别新帧和旧帧。

每发送完一个帧就停止发送,等待对方的确认,在收到确认后再发送下一个帧。

除了比特出差错,底层信道还会出现丢包 [1] 问题

“停止-等待”就是每发送完一个分组就停止发送,等待对方确认,在收到确认后再发送下一个分组。其操作简单,但信道利用率较低

信道利用率是指发送方在一个发送周期内,有效地发送数据所需要的时间占整个发送周期的比率。即

GBN发送方:

GBN接收方:

因连续发送数据帧而提高了信道利用率,重传时必须把原来已经正确传送的数据帧重传,是传送效率降低。

设置单个确认,同时加大接收窗口,设置接收缓存,缓存乱序到达的帧。

SR发送方:

SR接收方:

发送窗口最好等于接收窗口。(大了会溢出,小了没意义),即

传输数据使用的两种链路

信道划分介质访问控制将使用介质的每个设备与来自同一通信信道上的其他设备的通信隔离开来,把时域和频域资源合理地分配给网络上的设备。

当传输介质的带宽超过传输单个信号所需的带宽时,人们就通过在一条介质上同时携带多个传输信号的方法来提高传输系统的利用率,这就是所谓的多路复用,也是实现信道划分介质访问控制的途径。多路复用技术把多个信号组合在一条物理信道上进行传输,使多个计算机或终端设备共享信道资源,提高了信道的利用率。信道划分的实质就是通过分时、分频、分码等方法把原来的一条广播信道,逻辑上分为几条用于两个结点之间通信的互不干扰的子信道,实际上就是把广播信道转变为点对点信道。

频分多路复用是一种将多路基带信号调制到不同频率载波上,再叠加形成一个复合信号的多路复用技术。在物理信道的可用带宽超过单个原始信号所需带宽的情况下,可将该物理信道的总带宽分割成若千与传输单个信号带宽相同(或略宽)的子信道,每个子信道传输一种信号,这就是频分多路复用。

每个子信道分配的带宽可不相同,但它们的总和必须不超过信道的总带宽。在实际应用中,为了防止子信道之间的千扰,相邻信道之间需要加入“保护频带”。频分多路复用的优点在于充分利用了传输介质的带宽,系统效率较高;由于技术比较成熟,实现也较容易。

时分多路复用是将一条物理信道按时间分成若干时间片,轮流地分配给多个信号使用。每个时间片由复用的一个信号占用,而不像FDM那样,同一时间同时发送多路信号。这样,利用每个信号在时间上的交叉,就可以在一条物理信道上传输多个信号。

就某个时刻来看,时分多路复用信道上传送的仅是某一对设备之间的信号:就某段时间而言,传送的是按时间分割的多路复用信号。但由于计算机数据的突发性,一个用户对已经分配到的子信道的利用率一般不高。统计时分多路复用(STDM,又称异步时分多路复用)是TDM 的一种改进,它采用STDM帧,STDM帧并不固定分配时隙,面按需动态地分配时隙,当终端有数据要传送时,才会分配到时间片,因此可以提高线路的利用率。例如,线路传输速率为8000b/s,4个用户的平均速率都为2000b/s,当采用TDM方式时,每个用户的最高速率为2000b/s.而在STDM方式下,每个用户的最高速率可达8000b/s.

波分多路复用即光的频分多路复用,它在一根光纤中传输多种不同波长(频率)的光信号,由于波长(频率)不同,各路光信号互不干扰,最后再用波长分解复用器将各路波长分解出来。由于光波处于频谱的高频段,有很高的带宽,因而可以实现多路的波分复用

码分多路复用是采用不同的编码来区分各路原始信号的一种复用方式。与FDM和 TDM不同,它既共享信道的频率,又共享时间。下面举一个直观的例子来理解码分复用。

实际上,更常用的名词是码分多址(Code Division Multiple Access.CDMA),1个比特分为多个码片/芯片( chip),每一个站点被指定一个唯一的m位的芯片序列,发送1时发送芯片序列(通常把o写成-1) 。发送1时站点发送芯片序列,发送o时发送芯片序列反码。

纯ALOHA协议思想:不监听信道,不按时间槽发送,随机重发。想发就发

如果发生冲突,接收方在就会检测出差错,然后不予确认,发送方在一定时间内收不到就判断发生冲突。超时后等一随机时间再重传。

时隙ALOHA协议的思想:把时间分成若干个相同的时间片,所有用户在时间片开始时刻同步接入网络信道,若发生冲突,则必须等到下一个时间片开始时刻再发送。

载波监听多路访问协议CSMA(carrier sense multiple access)协议思想:发送帧之前,监听信道。

坚持指的是对于监听信道忙之后的坚持。

1-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:只要媒体空闲,站点就马上发送,避免了媒体利用率的损失。

缺点:假如有两个或两个以上的站点有数据要发送,冲突就不可避免。

非坚持指的是对于监听信道忙之后就不继续监听。

非坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:采用随机的重发延迟时间可以减少冲突发生的可能性。

缺点:可能存在大家都在延迟等待过程中,使得媒体仍可能处于空闲状态,媒体使用率降低。

p-坚持指的是对于监听信道空闲的处理。

p-坚持CSMA思想:如果一个主机要发送消息,那么它先监听信道。

优点:既能像非坚持算法那样减少冲突,又能像1-坚持算法那样减少媒体空闲时间的这种方案。

缺点:发生冲突后还是要坚持把数据帧发送完,造成了浪费。

载波监听多点接入/碰撞检测CSMA/CD(carrier sense multiple access with collision detection)

CSMA/CD的工作流程:

由图可知,至多在发送帧后经过时间 就能知道所发送的帧有没有发生碰撞。因此把以太网端到端往返时间为 称为争周期(也称冲突窗口或碰撞窗口)。

截断二进制指数规避算法:

最小帧长问题:帧的传输时延至少要两倍于信号在总线中的传播时延。

载波监听多点接入/碰撞避免CSMA/CA(carrier sense multiple access with collision avoidance)其工作原理如下

CSMA/CD与CSMA/CA的异同点:

相同点:CSMA/CD与CSMA/CA机制都从属于CSMA的思路,其核心是先听再说。换言之,两个在接入信道之前都须要进行监听。当发现信道空闲后,才能进行接入。

不同点:

轮询协议:主结点轮流“邀请”从属结点发送数据。

令牌:一个特殊格式的MAC控制帧,不含任何信息。控制信道的使用,确保同一时刻只有一个结点独占信道。每个结点都可以在一定的时间内(令牌持有时间)获得发送数据的权利,并不是无限制地持有令牌。应用于令牌环网(物理星型拓扑,逻辑环形拓扑)。采用令牌传送方式的网络常用于负载较重、通信量较大的网络中。

轮询访问MAC协议/轮流协议/轮转访问MAC协议:基于多路复用技术划分资源。

随机访问MAC协议: 用户根据意愿随机发送信息,发送信息时可独占信道带宽。 会发生冲突

信道划分介质访问控制(MAC Multiple Access Control )协议:既要不产生冲突,又要发送时占全部带宽。

局域网(Local Area Network):简称LAN,是指在某一区域内由多台计算机互联成的计算机组,使用广播信道。其特点有

决定局域网的主要要素为:网络拓扑,传输介质与介质访问控制方法。

局域网的分类

IEEE 802标准所描述的局域网参考模型只对应OSI参考模型的数据链路层与物理层,它将数据链路层划分为逻辑链路层LLC子层和介质访问控制MAC子层。

以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带总线局域网规范,是当今现有局域网采用的最通用的通信协议标准。以太网络使用CSMA/CD(载波监听多路访问及冲突检测)技术。 以太网只实现无差错接收,不实现可靠传输。

以太网两个标准:

以太网提供无连接、不可靠的服务

10BASE-T是传送基带信号的双绞线以太网,T表示采用双绞线,现10BASE-T 采用的是无屏蔽双绞线(UTP),传输速率是10Mb/s。

计算机与外界有局域网的连接是通过通信适配器的。

在局域网中,硬件地址又称为物理地址,或MAC地址。MAC地址:每个适配器有一个全球唯一的48位二进制地址,前24位代表厂家(由IEEE规定),后24位厂家自己指定。常用6个十六进制数表示,如02-60-8c-e4-b1-21。

最常用的MAC帧是以太网V2的格式。

IEEE 802.11是无线局域网通用的标准,它是由IEEE所定义的无线网络通信的标准。

广域网(WAN,Wide Area Network),通常跨接很大的物理范围,所覆盖的范围从几十公里到几千公里,它能连接多个城市或国家,或横跨几个洲并能提供远距离通信,形成国际性的远程网络。

广域网的通信子网主要使用分组交换技术。广域网的通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网,它将分布在不同地区的局域网或计算机系统互连起来,达到资源共享的目的。如因特网(Internet)是世界范围内最大的广域网。

点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的数据链路层协议,用户使用拨号电话接入因特网时一般都使用PPP协议。 只支持全双工链路。

PPP协议应满足的要求

PPP协议的三个组成部分

以太网交换机

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。简单的说就是同一时间内只能有一台设备发送信息的范围。

广播域:网络中能接收任一设备发出的广播帧的所有设备的集合。简单的说如果站点发出一个广播信号,所有能接收收到这个信号的设备范围称为一个广播域。

以太网交换机的两种交换方式:

直通式交换机:查完目的地址(6B)就立刻转发。延迟小,可靠性低,无法支持具有不同速率的端口的交换。

存储转发式交换机:将帧放入高速缓存,并检查否正确,正确则转发,错误则丢弃。延迟大,可靠性高,可以支持具有不同速率的端口的交换。

阅读全文

与端到端数据链是什么意思相关的资料

热点内容
襄阳职业技术学院附近有什么 浏览:881
nba有哪些令人惊艳的数据 浏览:665
纤伏代理怎么样 浏览:373
如何查看自己定向佣金产品 浏览:122
简历配偶信息怎么写 浏览:564
商贸代理怎么做 浏览:63
hmi模具加工有哪些技术 浏览:55
完美芦荟胶怎么代理 浏览:439
合约交易避开8点能省多少手续费 浏览:448
人类目前缺什么技术 浏览:431
警察与程序员哪个好 浏览:708
梦见临时市场在哪里 浏览:420
交易所流水是什么 浏览:153
小程序代理怎么找客 浏览:915
学电子技术专业的笔记本要什么配置 浏览:809
特效生发产品有哪些 浏览:725
国产哪些技术不如国外 浏览:851
朝鲜生产什么农产品 浏览:193
挂什么号可以查到违章信息 浏览:435
钉钉拉人进群能看到多少条信息 浏览:199