导航:首页 > 数据处理 > 数据师喜欢用什么软件

数据师喜欢用什么软件

发布时间:2023-11-15 01:07:55

‘壹’ 数据分析软件有哪些

数据分析软件有Excel、SAS、R、SPSS、Tableau Software。

1、Excel

为Excel微软办公套装软件的一个重要的组成部分,它可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。



5、Tableau Software

Tableau Software用来快速分析、可视化并分享信息。Tableau Desktop 是基于斯坦福大学突破性技术的软件应用程序。它可以以在几分钟内生成美观的图表、坐标图、仪表盘与报告。

‘贰’ 数据分析师常用工具有哪些

1、数据处理工具:Excel


数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。


2、数据库:MySQL


Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。


3、数据可视化:Tableau & Echarts


如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

‘叁’ 作为数据分析师的你都有哪些常用工具

大数据分析六大工具盘点:

一、Apache Hadoop

Hadoop 是一个能够对大量数据进行分布式处理的软件框架。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

二、HPCC

HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。

该项目主要由五部分组成:

1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;

2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;

3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;

4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期 的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支 持这些调查和研究活动;

5、信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。

三、Storm

Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。 Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。

Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。

四、Apache Drill

为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google's Dremel.

该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。

“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。

通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。

五、RapidMiner

RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

功能和特点

免费提供数据挖掘技术和库

100%用Java代码(可运行在操作系统)

数据挖掘过程简单,强大和直观

内部XML保证了标准化的格式来表示交换数据挖掘过程

可以用简单脚本语言自动进行大规模进程

多层次的数据视图,确保有效和透明的数据

图形用户界面的互动原型

命令行(批处理模式)自动大规模应用

Java API(应用编程接口)

简单的插件和推广机制

强大的可视化引擎,许多尖端的高维数据的可视化建模

400多个数据挖掘运营商支持

耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。

六、Pentaho BI

Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。

Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。

本文转载自加米谷大大数据-技术分享专栏,转载请注明出处。

‘肆’ 数据分析师使用的工具有哪些

EXCEL、SQL为最为需求侧提到最多的数据分析工具。⽽SPSS、SAS、R、PYTHON次之,而大数据工具如HADDOP等也提到较多。

业务数据分析中,主要以办公软件、数据处理、统计工具为主;EXCEL在业务数据分析被提及相当多次。数据处理工具SQL也被提及很多次,SAS、SPSS等统计分析软件是业务分析的流行工具。

数据挖掘工具中,包括了数据分析工具与平台开发⼯工具:PYTHON在数据挖掘中被提及最多,R其次;数据挖掘类岗位需求信息多次提到HADOOP、SPARK、JAVA等平台开发工具;数据处理⼯工具SQL被提及较多。

数据分析工具上,主要包括了平台开发工具与分析工具:HADOOP、SPARK、JAVA等⼤大数据平台开发工具需求最为旺盛;PTYHON、R在大数据分析中提及;很多传统统计分析工具如SPSS、SAS等被提到得并不多。

‘伍’ 大数据处理软件用什么比较好

常见的数据处理软件有Apache Hive、SPSS、Excel、Apache Spark、Jaspersoft BI 套件。

1、Apache Hive

Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。 Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。

数据分析与处理方法:

采集

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。

并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。

统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的大量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等。

而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些大量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。

也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

‘陆’ 有哪些做数据分析好用的软件工具

其实工具是非常具有个人喜好倾向的,每个数据分析师都有自己最习惯的工具,那么被提及频率最高且使用最多的不过是这几种:Excel、SQL、Python、R、Smartbi、Tableau、SPSS、SAS 等。
Excel是最入门也是最基础同时也是最主要的数据分析工具,优点也是数不胜数,而且是人人装机必备,所以协同起来非常方便。
SQL是数据分析这个职业人手必会的工具之一,入门相对来说比较简单,业内人笑称这是增删改查的小能手,总之如果想做数据分析师,那么这个工具是必备技能。SmartbiSmartbi是专业的BI工具,非常稳定且操作简单,功能也非常全面。TableauTableau和Excel部分功能有一些相似之处,但Tableau的界面优化更加完美,做出来的图比excel 要美观很多。
SPSS操作比较简单,只要你对界面和功能基本会用,那么准备好数据输入进行分析,软件会就自动给你算出分析结果。但是要想能读懂分析结果,需要自己有扎实的基础。
SAS 统计分析系统功能较 SPSS 而言更强大一些,它的语句针对性也比较强。SAS数据分析功能主要包括统计分析、经济计量分析、时间序列分析、决策分析、财务分析和全面质量管理工具等。PythonPython相比 Excel、SQL 而言,综合功能最为强大,也更加便捷高效。但也不是所有的都能用到Python。RR 在统计方面较为突出。R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用。
但是数据分析师不是单单只学会运用工具就可以的,最重要的还是数据分析思维和业务思维,以及强大的逻辑思维能力。

阅读全文

与数据师喜欢用什么软件相关的资料

热点内容
短线投机有哪些技术 浏览:225
苏州哪里有核心技术 浏览:452
襄阳职业技术学院附近有什么 浏览:881
nba有哪些令人惊艳的数据 浏览:665
纤伏代理怎么样 浏览:373
如何查看自己定向佣金产品 浏览:122
简历配偶信息怎么写 浏览:564
商贸代理怎么做 浏览:63
hmi模具加工有哪些技术 浏览:55
完美芦荟胶怎么代理 浏览:439
合约交易避开8点能省多少手续费 浏览:448
人类目前缺什么技术 浏览:431
警察与程序员哪个好 浏览:708
梦见临时市场在哪里 浏览:420
交易所流水是什么 浏览:153
小程序代理怎么找客 浏览:915
学电子技术专业的笔记本要什么配置 浏览:809
特效生发产品有哪些 浏览:725
国产哪些技术不如国外 浏览:851
朝鲜生产什么农产品 浏览:193