导航:首页 > 数据处理 > 大数据的变革有哪些困难和挑战

大数据的变革有哪些困难和挑战

发布时间:2023-11-11 15:48:43

⑴ 盘点2021年大数据分析常见的5大难点!

2021年已经到来,现在是深入研究大数据分析面临的挑战的时候了,需要调查其根本原因,本文重点介绍了解决这些问题的潜在解决方案。

1、解决方案无法提供新见解或及时的见解

(1)数据不足

有些组织可能由于分析数据不足,无法生成新的见解。在这种情况下,可以进行数据审核,并确保现有数据集成提供所需的见解。新数据源的集成也可以消除数据的缺乏。还需要检查原始数据是如何进入系统的,并确保所有可能的维度和指标均已经公开并进行分析。最后,数据存储的多样性也可能是一个问题。可以通过引入数据湖来解决这一问题。

(2)数据响应慢

当组织需要实时接收见解时,通常会发生这种情况,但是其系统是为批处理而设计的。因此有些数据现在仍无法使用,因为它们仍在收集或预处理中。

检查组织的ETL(提取、转换、加载)是否能够根据更频繁的计划来处理数据。在某些情况下,批处理驱动的解决方案可以将计划调整提高两倍。

(3)新系统采用旧方法

虽然组织采用了新系统。但是通过原有的办法很难获得更好的答案。这主要是一个业务问题,并且针对这一问题的解决方案因情况而异。最好的方法是咨询行业专家,行业专家在分析方法方面拥有丰富经验,并且了解其业务领域。

2、不准确的分析

(1)源数据质量差

如果组织的系统依赖于有缺陷、错误或不完整的数据,那么获得的结果将会很糟糕。数据质量管理和涵盖ETL过程每个阶段的强制性数据验证过程,可以帮助确保不同级别(语法、语义、业务等)的传入数据的质量。它使组织能够识别并清除错误,并确保对某个区域的修改立即显示出来,从而使数据纯净而准确。

(2)与数据流有关的系统缺陷

过对开发生命周期进行高质量的测试和验证,可以减少此类问题的发生,从而最大程度地减少数据处理问题。即使使用高质量数据,组织的分析也可能会提供不准确的结果。在这种情况下,有必要对系统进行详细检查,并检查数据处理算法的实施是否无故障

3、在复杂的环境中使用数据分析

(1)数据可视化显示凌乱

如果组织的报告复杂程度太高。这很耗时或很难找到必要的信息。可以通过聘请用户界面(UI)/用户体验(UX)专家来解决此问题,这将帮助组织创建引人注目的用户界面,该界面易于浏览和使用。

(2)系统设计过度

数据分析系统处理的场景很多,并且为组织提供了比其需要还要多的功能,从而模糊了重点。这也会消耗更多的硬件资源,并增加成本。因此,用户只能使用部分功能,其他的一些功能有些浪费,并且其解决方案过于复杂。

确定多余的功能对于组织很重要。使组织的团队定义关键指标:希望可以准确地测量和分析什么,经常使用哪些功能以及关注点是什么。然后摒弃所有不必要的功能。让业务领域的专家来帮助组织进行数据分析也是一个很好的选择。

4、系统响应时间长

(1)数据组织效率低下

也许组织的数据组织起来非常困难。最好检查其数据仓库是否根据所需的用例和方案进行设计。如果不是这样,重新设计肯定会有所帮助。

(2)大数据分析基础设施和资源利用问题

问题可能出在系统本身,这意味着它已达到其可扩展性极限,也可能是组织的硬件基础设施不再足够。

这里最简单的解决方案是升级,即为系统添加更多计算资源。只要它能在可承受的预算范围内帮助改善系统响应,并且只要资源得到合理利用就很好。从战略角度来看,更明智的方法是将系统拆分为单独的组件,并对其进行独立扩展。但是需要记住的是,这可能需要对系统重新设计并进行额外的投资。

5、维护成本昂贵

(1)过时的技术

组织最好的解决办法是采用新技术。从长远来看,它们不仅可以降低系统的维护成本,还可以提高可靠性、可用性和可扩展性。逐步进行系统重新设计,并逐步采用新元素替换旧元素也很重要。

(2)并非最佳的基础设施

基础设施总有一些优化成本的空间。如果组织仍然采用的是内部部署设施,将业务迁移到云平台可能是一个不错的选择。使用云计算解决方案,组织可以按需付费,从而显着降低成本。

(3)选择了设计过度的系统

如果组织没有使用大多数系统功能,则需要继续为其使用的基础设施支付费用。组织根据自己的需求修改业务指标并优化系统。可以采用更加符合业务需求的简单版本替换某些组件。

⑵ 如何应对“大数据时代”的挑战

大数据行业面临的五大挑战如下:

挑战一:数据来源错综复杂
丰富的数据源是大数据产业发展的前提。而我国数字化的数据资源总量远远低于美欧,每年新增数据量仅为美国的7%,欧洲的12%,其中政府和制造业的数据资源积累远远落后于国外。就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这大大降低了数据的价值。
现如今,几乎任何规模企业,每时皮枯每刻也都在产生大量的数据,但这些数据如何归集、提炼始终是一个困扰。而大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的信息,但前提是如何获取大量有价值的数据。

挑战二:数据挖掘分析模型建立
步入大数据时代,人们纷纷在谈论大数据,似乎这已经演化为新的潮流趋势。数据比以往任何时候都更加根植于我们生活中的每个角落。我们试图用数据去解决问题、改善福利,并且促成新的经济繁荣。人们纷纷流露出去大数据的高期待以及对大数据分析技术的格外看好。然而,关于大数据分析,人们鼓吹其神奇价值的喧嚣声浪很高,却鲜见其实际运用得法的模式和方法。造成这种窘境的原因主要有以下两点:一是对于大数据分析的价值逻辑尚缺乏足够深刻的洞察;其次便是大数据分析中的某些重大要件或技术还不成熟。大数据时代下数据的海量增长以及缺乏这种大数据分析逻辑以及大数据技术的待发展,正是大数据时代下我们面临的挑战。

挑战三:数据开放与隐私的权衡
数据应用的前提是数据开放,这已经是共识。有专业人士指出,中国人口居世界首位,但2010年中国新存储的数据为250PB,仅为日本的60%和北美的7%。目前我国一些部门和机构拥有大量数据但宁愿自己不用也不愿提供给有关部门共享,导致信息不完整或重复投资。2012年中国的数据存储量达到64EB,其中渣谈55%的数据需要一定程度的保护,然而目前只有不到一半的数据得到保护。

挑战四:大数据管理与决策
大数据的技术挑战显而易见,但其带来的决策挑战更为艰巨。大数据至关重要的方面,就是它会直接影响组织怎样作决策、谁来作决策。在信息有限、获取成本高昂且没有被数字化的时代,组织内作重大决策的人,都是典型的位高权重的人,要不然就是高价请来的拥有专业技能和显赫履历的外部智囊。但是,在今时今日的商业世界中,高管的决策仍然更多地依赖个人经验和直觉,而不是基于数据。

挑战五:大数据人才缺口
如果说,以Hadoop为代表的大数据是一头小象,那么企业必须有能够驯服它的驯兽师。在很多企业热烈拥抱这类大数据技术时,精通大数据技术的相关人才也成为燃梁洞一个大缺口。

⑶ 大数据面临的技术挑战

上周在大数据的趋势和特点中,说到了人类这次面临的问题不是问题无法解决,而是问题过于复杂。采用机械思维,其速度和效率已经赶不上新问题的产生。正是在这种分工越来越细,协作越来越紧密,问题越来越复杂的背景下,产生了大数据思维。大数据思维也由其独特的体量大、多样性和完备性,使得过去看来很复杂很难处理的问题变得可以解决了。

其实早在20世纪60年代就有研究学者提出采用人工智能的方法来解决社会问题。当时的人工智能方法还是局限于通过首先了解人类是如何产生智能,然后让计算机按照人的思路去做。吴军老师在《智能时代》中说到:“在人类发明的历史上,很多领域早期的尝试都是模仿人或者动物的行为,因为这是我们的直觉最容易想到的方法。” 但是经过十几年的发展,科学家们发现采用上面的思路去发展人工智能,似乎解决不了什么实际问题。很多科学家开始反思人工智能的发展,而在之后的20年左右的时间,在人工智能学术界的研究是处于低谷的。20世纪70年代,人类开始尝试智能的另一条发展道路,即采用数据驱动和超级计算的方法。即便在10年前,那时我还在念书,也曾接触过人工神经网络算法。很显然,当时对机器智能的概念大家都还是比较模糊的,人工智能也还没有被我们提高到现在的高度。

机器智能的概念在60多年就被提出来了,真正的突破却在具有了大数据的今天。为什么大数据的拐点会发生在今天?大数据到底面临何种技术挑战?

过去的10年,最容易看到的特征就是全球数据量呈爆炸式增长。大数据的第一个来源是电脑本身;第二个来源是传感器;第三个来源是将那些过去已经存在的、以非数字化形式储存的信息数字化。据2015年思科公司的统计数据显示,从2009~2015年的6年时间内,企业级数据增长了50倍。当然数据的爆炸式增长,离不开电脑硬件、软件、互联网、数据储存、数据处理等一系列配套技术的发展和支撑。大数据实际上是对计算机科学、电机工程、通信、应用数学和认知科学发展的一个综合考量。目前这些技术难题不一定有最佳的解决方案,甚至不存在什么绝对好的解决办法。

一、数据收集

传统的数据方法常常是先有一个目的,然后开始收集数据。比如,海王星的发现就是在人们发现天王星运动轨迹和牛顿力学预测出来的不一样之后,天文学家拍了很多星空的照片后发现的;心理学研究也是在有了一个明确的研究课题后,再通过实验的方法采集数据,如 “棉花糖测验”系列实验,以及关于认知失调的“追随者案例”等等。大数据则避免了采样之苦,因为大数据常常以全集(大数据的特征之一)作为样本集。

但是,如何收集到全集就是一件很有挑战的事情了。目前一些聪明公司,比如Google, Facebook, 网络,京东都是绕一个弯子,间接地去收集数据,然后利用数据的相关性,导出自己想要的结论。但是即便是这些如此成功的公司,仍然也有很多失败的案例。2010年,Google推出了自己的电视机顶盒Google TV,为了获取数据为进入电视广告做准备。但是,由于Google TV销售得很差,最终Google彻底地放弃了这产品。到目前为止,无论是Google过去的机顶盒,还是后来的Chromecast,苹果的Apple TV,除了统计一下收视率,计算一下可能的广告观众,并没有什么大的作为。数据收集是一个开放性的话题,不存在唯一性或最佳方法,目前仍然面临着很大的挑战。

二、数据储存

仅Google街景地图每天产生的数据量就有1TB,假如一份数据存三个拷贝,一年下来就1PB。即使使用当今最大容量的10TB硬盘,也需要用100个。因此,不能简单地依靠设备来解决数据储存的问题,而是需要技术解决方案来提高储存效率,保证不断产生出来的数据都能存得下。目前的数据储存手段主要是从如下2个方面考虑:去除数据冗余和便于使用。去除数据冗余可以简单理解为去除数据中的重复部分,比如同一份附件在所有的邮件中只储存一次。这样,在去除数据冗余的过程中,相应的数据读写处理就要改变。是否有比现在更有效率的储存格式或方式,仍然是大数据所面临的挑战。另外,便于使用的思路是从使用者的角度就去考虑数据的储存。大数据之前,数据在设计文件系统的数据储存格式时,主要考虑的是规模小、维度少的结构化数据。到了大数据时代,不仅数据量和维度都剧增,而且大数据在形式上也没有固定模式,因此需要重新设计通用、有效和便捷的数据表示方式和储存方式。

三、数据处理

大数据由于体量大、维度多,处理起来计算量巨大,其处理效率是一大技术挑战。并行计算是目前解决计算量巨大的重要手段,但仍然存在一些的问题。例如,任何一个问题总用一部分计算是无法并行计算的,这类计算占比越大,并行处理的效率就越低;再次,并行计算中无法保证每一个小任务的计算量是相同的,这样一来,并行计算的效率也会大打折扣,即完成了自己计算任务的服务器需要等待个别尚未完成的服务器,最终的计算速度取决于最后完成的子任务。

四、数据挖掘

如何从一堆杂乱无章的数据中挖掘出有价值的信息,是机器智能的关键,也是大数据的使命。数据在进行降噪处理之后,基本就可以直接使用了,接下来的关键一步就是机器学习。目前广泛使用的机器学习算法有人工神经网络算法、最大熵模型、逻辑自回归等。Google公司的AlphaGo的训练算法就是人工神经网络。机器学习的过程是一个不断迭代、不断进化的过程,只要事先定出一个目前,这些算法就会不断地优化模型,让它越来越接近真实的情况。寻找更优算法一直也是科学家们探索的难题。

五、数据安全

大数据应用的一个挑战还来自数据安全的担忧和对隐私的诉求。2014年爆出的索尼公司丢失数据时,造成的损失高达1亿美元。比商业数据丢失后损失更大的是医疗数据的被盗。在中国,除了在北京建立了大数据中心,还在贵阳建立了大数据灾备中心,而且正筹备在内蒙古再建立另一个数据灾备中心。而关于数据隐私,我想大家应该是深有感触,由于信息泄露而带来的骚扰电话以及电信诈骗,就发生在我们每个人身上。据《智能时代》中记载:“在美国的黑市上,一个医疗记录的卖家是商业数据的50倍左右”。可见,数据安全已然成为大数据发展的一大隐患和难题。

上述大数据5个方面的技术挑战并不是独立的,而是相辅相成、互相影响的。关于大数据的技术挑战在此仅谈谈个人的一点认识,希望对大家在这方面的思考有所帮助。下周我们继续聊,大数据给我们带来便利以及隐患。

⑷ 大数据时代的挑战、价值与应对策略

大数据时代的挑战、价值与应对策略
随着移动互联网、物联网、云计算等的快速发展,及视频监控、智能终端、应用商店等的快速普及,全球数据量出现爆炸式增长。在此背景下,电信运营商在其网络无休止扩容的同时,却面临“增量不增收”的困境;而一些采用“数据驱动型决策”模式经营的公司,则可将其生产力提高5%~6%。因此,有必要深入研究大数据时代(Big Data Era)的挑战、价值与务实应对策略。
1大数据时代的基本特征
据统计,2010年以互联网为基础所产生的数据比之前所有年份的总和还要多;而且不仅是数据量的激增,数据结构亦在演变。Gartner预计,2012年半结构和非结构化的数据,诸如文档、表格、网页、音频、图像和视频等将占全球网络数据量的85%左右;而且,整个网络体系架构将面临革命性改变。由此,所谓大数据时代已经来临!
对于大数据时代,目前通常认为有下述四大特征,称为“四V”特征:
(1)量大(Volume Big)。数据量级已从TB(1012字节)发展至PB乃至ZB,可称海量、巨量乃至超量。
(2)多样化(Variable Type)。数据类型繁多,愈来愈多为网页、图片、视频、图像与位置信息等半结构化和非结构化数据信息。
(3)快速化(VelocityFast)。数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理;处理工具亦在快速演进,软件工程及人工智能等均可能介入。
(4)价值高和密度低(Value HighandLowDensity)。以视频安全监控为例,连续不断的监控流中,有重大价值者可能仅为一两秒的数据流;360°全方位视频监控的“死角”处,可能会挖掘出最有价值的图像信息。
2大数据时代面临的挑战
(1)运营商带宽能力与对数据洪流的适应能力面临前所未有的挑战,管道化压力化解及“云-管-端”的有效装备也均面临新挑战。
(2)大数据的“四V”特征在数据存储、传输、分析、处理等方面均带来本质变化。数据量的快速增长,对存储技术提出了挑战;同时,需要高速信息传输能力支持,与低密度有价值数据的快速分析、处理能力。
(3)海量数据洪流中,在线对话与在线交易活动日益增加,其安全威胁更为严峻;而且现今黑客的组织能力、作案工具、作案手法及隐蔽程度更上一层楼,典型的有APT(Advanced Persistent Threat,高级持续性安全威胁)。
(4)大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,乃至企业用户的商业机密,对个人隐私问题必须引起充分重视。
(5)大数据时代的基本特征,决定其在技术与商业模式上有巨大的创新空间,这将对可持续发展起关键作用。
(6)大数据时代的基本特征及安全挑战,对政府制订规则与监管部门发挥作用提出了新的挑战。
3大数据带来的价值
(1)利用大数据特征,借助云计算等有效工具,深度挖掘流量与数据价值,可帮助运营商实施好流量经营,减轻管道化风险,发扬“云-管-端”的智能管道的威力。
(2)多业务环境下掌握用户体验效果尤为重要,可从海量用户数据中深度分析、挖掘出用户的行为习惯和消费爱好,以实施精准营销及网络优化,掌控数据增值的“金钥匙”。
(3)掌握好大数据的存储、分类、挖掘、快速调用和决策支撑,并应用于企业的日常运营、维护及战略转型中,成为企业可持续发展、维持竞争优势的当务之急与重要途径。
(4)充分利用对大数据的分析、挖掘,可帮助找到隐蔽性极强的APT之类的安全威胁,助力信息安全部门找到应对新型安全威胁的有效途径。
(5)通过对公共大数据的分析、挖掘与利用,可减少欺诈行为及错误数据的负面作用、追收逃税漏税及刺激公共机构生产力等,帮助政府节省开支。例如英国政府即通过此途径节省大约330亿英镑/年。
4大数据时代的应对策略
(1)大数据时代应以智慧创新理念融合大数据与云计算,在大数据洪流中提升知识价值洞察力,实施高效实时个性化运作,建立有效增值的商业模式,确保应对APT之类的新型安全威胁。
(2)电信运营商转型中流量经营已成共识,即以智能管道与聚合平台为基础,以扩大流量规模、提升流量层次及丰富流量内涵作为基本经营方向,并以释放流量价值为基本目标,可见大数据和云计算的深度融合与此流量经营目标十分吻合。实际上已经有一些运营商借助大数据Hadoop云工具管理与分析网络中的用户数据,为日常运维及制定市场战略等提供有效支撑。
(3)针对大数据时代的基本特征,加强全方位创新。包括IBM、EMC、HP、Microsoft等在内的IT巨头,纷纷加速收购相关大数据公司进行技术整合,寻找数据洪流大潮中新的立足点。而涉及人工智能、机器学习等新技术的创新应用,已初显效益。
(4)将大数据时代全方位创新工作和智慧城市发展紧密结合。借助移动互联网、大数据与云计算的融合、智能运营管道等,建立智能平台,优化配置城市资源,向真正的智慧城市迈进。
(5)借助大数据创新处理技术应对APT安全攻击。APT安全攻击的最主要特征为单点隐蔽能力强、攻击空间路径不确定、攻击渠道不确定;同时APT攻击一旦入侵成功则长期潜伏,攻击时间上具有持续性。目前,全流量审计方案具备强大的实时检测能力与事后回溯能力,并可将安全工作人员的分析能力、计算机存储与运算能力组合在一起,是一种较完整的解决方案。

阅读全文

与大数据的变革有哪些困难和挑战相关的资料

热点内容
交易所流水是什么 浏览:153
小程序代理怎么找客 浏览:915
学电子技术专业的笔记本要什么配置 浏览:809
特效生发产品有哪些 浏览:725
国产哪些技术不如国外 浏览:851
朝鲜生产什么农产品 浏览:193
挂什么号可以查到违章信息 浏览:435
钉钉拉人进群能看到多少条信息 浏览:199
中国电子信息类有哪些专业 浏览:155
淘宝的装修市场在哪里 浏览:428
英雄杀微信小程序抽至宝多少钱 浏览:981
汽车二手车市场哪个好 浏览:617
房产交易网签需要多久 浏览:999
山东省哪里有最大的羊市场 浏览:843
哪里学宏程序 浏览:697
知网节页面可以查到作者哪些信息 浏览:708
代理合同无效如何起诉 浏览:377
团队中如何开拓市场 浏览:206
农产品如何做网店 浏览:582
成都摩配市场租金多少 浏览:811