Ⅰ 销售数据分析方法有哪些
1、对比分析:通过多种产品数据进行对比分析,这样可以实现产品功能的好坏分析。
2、多维度拆解:用不同的视角去拆分、观察同一个数据指标。分析流程为启动事件分析、分析完成之后的结果、多维度拆分小结。
3、漏斗观察:就是一连串想后影响的用户行为。一个个行为构成,是前一步对后一步是有影响的。
4、评估渠道质量并确定投放优先级:评估产品各渠道营销情况,决定渠道投放的优先级。
5、分布情况分析方法:是在一个事件不仅仅只有累计数量这么一个可以观察的指标,还可以观察这个事件在不同维度的分布来观察。
6、用户留存的分析方法:分析产品用户数据,看看用户是否可以发展为长期用户。
Ⅱ 如何分析销售数据与报表
为什么要做销售数据分析?
企业的业务数据涉及销售数据、财务数据、人力数据、产品数据等多种类型,而销售数据在所有数据中的重要性毋庸置疑。通过分析销售数据,将有助于发现经营问题,降低销售成本,最终提高企业销售利润。
关键指标提取
不同行业对销售指标的侧重各有不同,本文将以建材行业为例进行说明。
其中涉及的销售数据指标包括:销售数量、销售单价、销售收入、单位成本、销售成本、销售毛利等,原始数据中还会涉及月份、城市、分类、计量单位、对应客户等信息。
图表与看板制作
提取完重要数据指标后,您就可以根据需求制作相关看板与图表。在此之前,用户必须对需要监控的指标做到心中有数。
一般来说,制作看板时,根据目的不同可以分为三类:
1. 基础数据看板:总览全局
这类看板大家都比较熟悉,主要是由包括地图、条形图、饼图等一系列的基础图表组成,用于查看不同地区、时间、类别的销售收入、销售成本等基础数据。下图是根据建材行业的示例数据生成的一个看板:
(以上图表使用DataHunter制作)
Ⅲ 网络营销人如何进行数据分析
首先,懂的做数据,非常的重要。也就是如何把数据做好,这里的好,是指:把有效的数据展示出来。其次,把有效的数据直观的展示出来。
那么,什么叫做有效的数据。根据核心数据指标倒推出来的关键数据指标。
例如:GMV=销售额+取消订单金额+拒收订单金额+退货订单金额。那么整个数据中,核心指标即:GMV。关键数据指标:销售额、取消订单金额、拒收订单金额、退货订单金额。通过对每个关键数据指标的观察,发现他们对于GMV影响的大小。
看懂数据的要求非常基础,就是知道核心指标,关键指标的算法是什么,如何计算出来的。然后在对应的表格内,记录出来。这里,只要求记录出来就好了。
其次,分析数据,是一个执行者网上晋升的一项必备能力。
例如:产运的小伙伴,时长关注的一个数据:留存。次留、三留、七留、十四留这些数据。月末复盘工作时,把整个用户的留存数据导出来看。会发现,有些渠道拉新过来的用户,留存质量很高,但是有些渠道过来的,留存质量就很差。那么,到底是因为渠道拉新的质量问题呢?还是这个月内,App的版本、内容等做了优化更新呢?这个就是需要思考的,但是只是单纯的思考,很难找到原因。面对老板的灵魂拷问,也没办法很有力的结束出来。但是通过分析数据,得出最终的结论,就很容易找到原因。
最后,看懂数据,这个要求其实就是把1和2结合在一起。我记得我之前的领导说过一句话:对任何数据都要存疑。好就要找出好的地方,好的原因,坏就要找出为什么坏,如何改进优化。
关于网络营销人如何进行数据分析,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅳ 销售数据如何分析
关于销售数据分析,可以参考以下内容:
原本以为当上销售领导,可以拿着高薪与老板近距离接触,琐碎之事交给小弟,其实苦逼的生活才刚刚开始,老板经常要数据,每次都要重新做分析,恐怖!
换了一个数据分析工具,第一次做好分析之后,以后数据结果会自动定时更新哦(当然我连接了数据库数据、表单数据),整理了常见数据跟大家分享。
作为一个小领导,每天都要看下属的客户拜访情况,团队的成员会在协同软件上详细记录自己的拜访的情况,包括客户名称、行业和具体情况 。
地区分布:通过提供BDP个人版的数据地图,你能直观看到销售额的全国分布情况,还可钻取到各省的各个城市,一步一步分析问题,找到对应负责人,不断优化销售策略。
这些数据都是销售最经常关注的数据,做好图表后直接通过BDP的“分享”功能将数据结果分享给Boss,分析效率大大提高了呢,就有更多时间去管理销售业绩,优化营销策略,让业绩不断提高~~~
Ps:上面美观的数据图表均来自BDP个人版~