导航:首页 > 数据处理 > 截面数据有哪些回归方法

截面数据有哪些回归方法

发布时间:2023-11-02 05:08:44

⑴ 截面数据回归分析实例

应该是用 ARIMAX来做,先检验协整燃历空,如果协整继续做,看协相关图烂困,写出皮瞎模型表达式,再利用ARMA拟合。应该是这样

⑵ 截面数据怎么补

l.varname表示滞后一阶,l2.varname表示滞后二阶,以此类推
下面是更多方法:
(一)个案剔除法
最常见、最简单的处理缺失数据的方法是用个案剔除法也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。
(二)均值替换法
将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。
(三)热卡填充法
对于一个包含缺失值的变量,热卡填充法在数据库中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不同的问题可能会选用不同的标准来对相似进行判定。最常见的是使用相关系数矩阵来确定哪个变量(如变量Y)与缺失值所在变量(如变量X)最相关。然后把所有个案按Y的取值大小进行排序。那么变量X的缺失值就可以用排在缺失值前的那个个案的数据来代替了。与均值替换法相比,利用热卡填充法插补数据后,其变量的标准差与插补前比较接近。但在回归方程中,使用热卡填充法容易使得回归方程的误差增大,参数估计变得不稳定,而且这种方法使用不便,比较耗时。
(四)回归替换法
回归替换法首先需要选择若干个预测缺失值的自变量,然后建立回归方程估计缺失值,即用缺失数据的条件期望值对缺失值进行替换。与前述几种插补方法比较,该方法利用了数据库中尽量多的信息,而且一些统计软件(如Stata)也已经能够直接执行该功能。但该方法也有诸多弊端,第一,这虽然是一个无偏估计,但是却容易忽视随机误差,低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。第二,研究者必须假设存在缺失值所在的变量与其他变量存在线性关系,很多时候这种关系是不存在的。
(五)多重替代法
首先,多重估算技术用一系列可能的值来替换每一个缺失值,以反映被替换的缺失数据的不确定性。然后,用标准的统计分析过程对多次替换后产生的若干个数据集进行分析。最后,把来自于各个数据集的统计结果进行综合,得到总体参数的估计值。由于多重估算技术并不是用单一的值来替换缺失值,而是试图产生缺失值的一个随机样本,这种方法反映出了由于数据缺失而导致的不确定性,能够产生更加有效的统计推断。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断。

⑶ 面板数据分析方法总结

面板数据分析方法总结

横截面的异方差与序列的自相关性是运用面板数据模型时可能遇到的最为常见的问题,此时运用OLS可能会产生结果失真,因此为了消除影响,对我国东、中、西部地区的分析将采用不相关回归方法( SeeminglyUnrelated Regression, SUR)来估计方程。而对于全国范围内的估计来说,由于横截面个数大于时序个数,所以采用截面加权估计法(Cross SectionWeights, CSW) 。
一般而言,面板数据可用固定效应(fixed effect) 和随机效应(random effect) 估计方法,即如果选择固定效应模型,则利用虚拟变量最小二乘法(LSDV) 进行估计;如果选择随机效应模型,则利用可行的广义最小二乘法(FGLS) 进行估计(Greene ,2000) 。它可以极大限度地利用面板数据的优点,尽量减少估计误差。至于究竟是采用固定效应还是随机效应,则要看Hausman 检验的结果。
单位根检验:在进行时间序列的分析时,研究者为了避免伪回归问题,会通过单位根检验对数据平稳性进行判断。但对于面板数据则较少关注。随着面板数据在经济领域应用,对面板数据单位根的检验也逐渐引起重视。面板数据单位根的检验主要有Levin、Lin 和Chu 方法(LLC 检验) (1992 ,1993 ,2002) 、Im、Pesaran 和Shin 方法( IPS 检验) (1995 ,1997) 、Maddala 和Wu 方法(MW检验) (1999) 等。
协整检验:协整检验是考察变量间长期均衡关系的方法。在进行了各变量的单位根检验后,如果各变量间都是同阶单整,那么就可以进行协整检验了。面板协整检验理论目前还不成熟,仍然在不断的发展过程中,目前的方法主要有:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。(2)Pedron(i1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。(3)Larsson et a(l2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法。这种检验的方法是检验变量存在共同的协整的秩。
一般的顺序是:先检验变量的平稳性,当变量均为同阶单整变量时,再采用协整检验以判别变量间是否存在长期均衡关系。如果变量间存在长期均衡的关系,我们可以通过误差修正模型(ECM) 来检验变量间的长期因果关系;如变量间不存在协整关系,我们将对变量进行差分,然后通过向量自回归模型(VAR),检验变量间的短期因果关系。

阅读全文

与截面数据有哪些回归方法相关的资料

热点内容
nb在哪里可以交易 浏览:712
数据统计员一个月多少钱 浏览:187
化工重芳烃精制的产品是什么 浏览:365
短线投机有哪些技术 浏览:225
苏州哪里有核心技术 浏览:452
襄阳职业技术学院附近有什么 浏览:881
nba有哪些令人惊艳的数据 浏览:665
纤伏代理怎么样 浏览:373
如何查看自己定向佣金产品 浏览:122
简历配偶信息怎么写 浏览:564
商贸代理怎么做 浏览:63
hmi模具加工有哪些技术 浏览:55
完美芦荟胶怎么代理 浏览:439
合约交易避开8点能省多少手续费 浏览:448
人类目前缺什么技术 浏览:431
警察与程序员哪个好 浏览:708
梦见临时市场在哪里 浏览:421
交易所流水是什么 浏览:154
小程序代理怎么找客 浏览:916
学电子技术专业的笔记本要什么配置 浏览:810