导航:首页 > 数据处理 > ppt大数据怎么弄

ppt大数据怎么弄

发布时间:2023-10-28 05:49:54

A. 要做一个介绍大数据的PPT,求大神帮帮忙,感激不尽!

问题描述不清楚哟,不过还是提供点信息给你吧。

1.大数据是什么?怎么理解大数据?

数据就好比地球上的水,单个数据就是一滴水,小溪、河流、湖泊,对应不同的数据体量,所有的水最终汇到海洋,大数据就象地球上的海洋,它足够大,水滴足够多,多到用人工数不清楚,里面的资源超级丰富,那些资源也是数据。这么说,你明白大数据了吗?就是把超级多数据信息汇集到一起,然后在里面“钓大鱼”。

2.都说大数据有4V的特征,是什么意思?

大数据的4V,就是“容量大Volume”“多样性Variety”“价值高Value”“速度快Velocity”,同样以海洋为例:

A.容量大:地球表面有70%左右都是海洋,想想里面都有多少水滴?大数据时代,每一个人、每一件物品的信息、状态,都能够形成一系列随时更新的数据,数据量也呈现出指数级的增长;

B.多样性:海洋里面的物产非常多样化,就拿海鲜来说,小智一天吃一种,这辈子都可能吃不完一遍(所以小智不会纠结吃什么的问题),太平洋的海水和大西洋的海水是有区别的,不同地方海水里面蕴含的物质、生活的物种都有不同,海洋就是超级大宝藏,里面有原油、有萌宠、也有大白鲨之类的猎手……大数据也和海洋一样复杂,各种结构化、非结构化数据,汇成了数据海洋;

C.价值高:说到这个,资深吃货口水直流,海里好吃的有大龙虾、石斑鱼、三文鱼……更不用说其它宝贝啦,数据海洋里面各种资源同样丰富到极致,人们利用海洋,开发海洋中无穷的价值;

D.速度快,有两个层面的意思,一是海水流动快,二是随着技术的提升,我们对海水的利用也加快了速度(看看快艇、游轮的发展),毕竟嘛,先来吃肉、后来喝汤,这个道理,你懂的。

3.对大数据的处理,以海洋捕鱼为例:

通过技术手段,在茫茫大海中找到鱼群较集中的地点,这是数据挖掘;

捕到的鱼进行初步分类,把太小的鱼放回海中(养大了才好吃,原谅我是吃货),这是数据清洗;

然后把鱼运上岸,仔细分类,根据实际情况决定哪些鱼送到海鲜市场卖活的,哪些鱼用于做鱼干,这是数据分析

鱼干、鱼罐头、鱼子酱、鱼肝油……目不暇接的海产品最终呈现在我们面前,此为数据可视化。

更多的,可进一步交流。

B. 大数据可视化大屏图表设计经验,教给你!

自从跟大家分享第一篇 《大数据可视化大屏设计经验,教给你!》 ,很多小伙伴都会问我一些相关的问题,看了小伙伴给我发的视觉稿,整体都还不错,但是发现图表的设计都有一些问题,大家可能对数据可视化的图表设计经验少一些,所以这篇文章就挖掘一下图表的细节表现,分享我曾经遇到过的坑和对图表设计的理解。

图表设计 

图表设计概念

图表设计是数据可视化的一个分支领域,是对数据进行二次加工,用统计图表的方式进行呈现,也是数据可视化的核心表现,图表设计既要保证图表本身数据清晰准确、直观易懂,又要在找准用户关注的核心内容进行适当的突显,帮助用户通过数据进行决策。

下面分析三种常用的可视化图表设计:

折线图

折线图常用于表示数据的变化和趋势,坐标轴的不同对折线的变化幅度有很大的影响。

左图坐标轴设定的太低,折线变化过于陡峭,图中数值区间为(10-34)数据可视化的表现过于夸大了折线变化的趋势。

右图坐标轴的数值设定的太高,则折线变化过于平缓,无法清晰的表现折线的变化。

合理的折线图应当占据图表的三分之二的位置,图表的X轴数值范围应根据折线的数值增减变化而变化,这需要跟前端小哥哥小姐姐说明,做成动态计算。

折线图的折线粗细要合理,过细的折线会降低数据表现,过粗的折线会损失折线中的数据波动细节,视觉上较难精准找到折线点的相应数值!我通常用两个像素的线,看起来比较合适!

右图刻度线颜色过重,影响图表数据的表现,零基线跟图表内的刻度线对比不够明显,整体很乱。零基线是强调起始位置的,一般要比图表内的线颜色凸出一些。

条形图/柱状图

理想很丰满,现实很骨感。这个案例是我之前在工作中遇到的问题,数据进来后,被吓到了,问题的原因是没有跟前端小哥姐沟通好,他们把X轴写死,导致出现这种问题,其实应该情况要把这些图表的取值范围写成动态计算的。

例如,以现在数值范围为例,数据的最高值为18,X轴最高数值应该为25,当数据又上升一定的高度后,X轴再上升到相应的数值高度,这样避免了如右图的问题。

坐标轴的标签文字最好能水平排列, 当X轴标签文字过多时,不建议倾斜排列、上下排列、换行排列 文字多了这样的展示大大降低了阅读性!下图给出两个解决方案,大大提高标签文字的阅读性!

解决方案

柱子之间过于分散就会失去数据之间的关联性,过密就会变得数据之间没有独立性更不利于舒适阅读。

当柱子为n时,柱子直接的距离建议与n相差不要太大,柱子靠边的距离,最好是柱子之间的一半的距离,这样视觉上最为舒适。

饼图

左1图,不建议在饼图内与百分比数值一起显示,饼图本身的形状和大小,文字过多时容易溢出,如果出现一个2%一个1%,就很难辨别图形指向,这样也就失去了数据可视化的意义,PPT通常有这样的设计样式,因为是个死图。

左3图,人的阅读习惯是从左到右,从上到下,所以数据从大到小排列,更有助于阅读,图形也更具美感!

当饼图为检出率,或者一些重要信息检测的重点关注数据,就不建议大小数据顺时针排列,左1图这种情况一般很少出现,因为关注的是检出数值,展示未检出数据实为鸡肋,可能是极少情况的需要吧!

右图对于类似检出率的数据最为合适,直观清晰,没有无用数据干扰!

当饼图的标签维度过多时,就不适合把数据围绕饼图一周展示,会很乱,不易阅读,解决方案如右图!

图表分类图

分享一张图表分类大全,保存起来,设计数据可视化产品,会有重要参考价值!

这张图由设计师Abela对图表的各种特征进行了大致的概括总结。

阅读全文

与ppt大数据怎么弄相关的资料

热点内容
做市场投放需要注意什么 浏览:742
滨州哪里有鉴定交易 浏览:59
批发市场的鸡蛋皮是怎么知道的 浏览:269
麻友圈成为代理怎么充卡 浏览:64
有什么好的技术推广 浏览:43
交易数据异常是什么意思 浏览:327
汽修技术培训如何学 浏览:12
nb在哪里可以交易 浏览:712
数据统计员一个月多少钱 浏览:187
化工重芳烃精制的产品是什么 浏览:365
短线投机有哪些技术 浏览:225
苏州哪里有核心技术 浏览:452
襄阳职业技术学院附近有什么 浏览:881
nba有哪些令人惊艳的数据 浏览:665
纤伏代理怎么样 浏览:373
如何查看自己定向佣金产品 浏览:122
简历配偶信息怎么写 浏览:564
商贸代理怎么做 浏览:63
hmi模具加工有哪些技术 浏览:55
完美芦荟胶怎么代理 浏览:439